
Cop

33 South La Patera Lane
Santa Barbara, CA 93117-3214
ph (805) 681-3300
fax (805) 681-3311
tech@motioneng.com
www.motioneng.com

APPLICATION NOTE 206, REV. D
SIM4 Option: Installation and Calibration

(DOC. NO. 9D00-0106)

CONTENTS

Section and Title Page No.
206.1. Introduction .. 2
206.2 About Scale Interpolation.. 3
206.3 SIM4 Architecture ... 4
206.4 SIM4 Block Diagram ... 6
206.5 SIM4 Hardware Installation... 7
206.6 SIM4 Configuration ... 11
206.7 Sample Applications ... 13
yright © 2001, Motion Engineering, Inc. 1 of 21

Document Revision History: Application Note 206

Rev. Date Description DCR No.

D 2001JAN04 Sect. 206.4, "Maximum Count Rate." 525

C 2000APR17 Added steps to the hardware installation chapter 423

B 2000APR12 Updates: 206.6; 206.7. 360

Application Note 206, Rev. D Doc. No. 9D00-0106
206.1 INTRODUCTION
If your XMP application requires increased position resolution and your scale has
sinusoidal outputs, you can use the SIM4 (scale interpolation module) with the XMP.
The SIM4 module is available in two configurations: voltage mode or current mode.
A SIM4 with the Voltage Mode option interfaces with a voltage encoder output (1 V
peak-to-peak differential). A SIM4 with the Current Mode option interfaces with a
current encoder output (11 microamperes peak-to-peak differential).
Figure 1. SIM4 Scale Interpolation in a Typical Control System

SIM4

SIM4

XMP CONTROLLER AMPLIFIER

Encoder Feedback

The encoder feedback is routed
through the XMP connector and
then to the SIM4 modules.

MOTOR

ENCODER WITH
SINUSOIDAL OUTPUTS

Encoder Signals (A, B, I)

Scale Interpolation in a
Typical Control System
2 of 21 Copyright © 2001, Motion Engineering, Inc.

Doc. No. 9D00-0106 Application Note 206, Rev. D
206.2 ABOUT SCALE INTERPOLATION
Figure 2. Scale Interpolation of Encoder Pulses

IMPORTANT: When enabling the SIM4, adjust filter parameters and limits to allow
for encoder count rates 1024 times larger than non-interpolated count rates.

Position

BTYPICAL
ENCODER SAMPLING

A & B signals from the encoder
(outputs are square waves). The
A & B signals differ in phase by
90 degrees. A

4 sample points per cycle
(2 rising edges, 2 falling edges)

sine

cosine

sine

cosine

4096 sample
points per cycle

The SIM4 increases the
position resolution of the
encoder by 1024x.

index

B

A

I

A & B signals from the encoder
(outputs are sinusoidal, and not
square waves)

SAMPLING WITH
SCALE INTERPOLATION

Scale Interpolation
Copyright © 2001, Motion Engineering, Inc. 3 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
206.3 SIM4 ARCHITECTURE
Figure 3. XMP Architecture for 8 Motors

U
p

to
 8

pe
r b

oa
rd

U
p

to
 8

pe
r b

oa
rd

U
p

to
 2

4
pe

r b
oa

rd

SH
AR

C
 s

ub
sy

st
em

is
 p

ar
t o

f t
he

 M
ai

n
bo

ar
d

1
B

oa
rd

8
M

ot
or

s

T R
AN

SC
EI

VE
R

 I/
O

• S
te

p/
D

ire
ct

io
n

• C
W

/C
C

W
• P

os
iti

on
 C

ap
tu

re
• P

os
iti

on
 C

om
pa

re
• G

en
er

al
 P

ur
po

se

O
PT

IO
N

AL
 D

AC
S

S E
R

VO
 O

U
TP

U
TS

SR
AM

F L
AS

H
 M

EM
O

R
Y

B U
S

I N
TE

R
FA

C
E

(P
C

I O
R

 C
PC

I)

40
 M

bi
ts

/s
ec

 li
nk

Tw
o

M
od

ul
es

/B
oa

rd

M
O

TI
O

N
 B

LO
C

K
S

(2
 P

ER
 B

O
AR

D
)

E N
C

O
D

ER
 I N

PU
TS

U
SE

R
 I/

O

D
ED

IC
AT

ED
 I/

O

M
ai

n
Bo

ar
d

U
p

to
 1

0
pe

r b
oa

rd

U
p

to
 8

pe
r b

oa
rd

U
p

to
 4

2
pe

r b
oa

rd

U
p

to
 8

pe
r b

oa
rd

U
p

to
 4

pe
r m

od
ul

e

O
pt

io
na

l

A N
AL

O
G

 I N
PU

TS
U

p
to

 8
D

at
a

Bu
s

SH
AR

C
D

SP
(3

2-
BI

T
FL

O
AT

IN
G

 P
O

IN
T)

M
O

TI
O

N
 B

LO
CK

(1
 P

ER
 4

 M
O

TO
RS

,
2

PE
R

BO
AR

D
)

SI
M

4
SC

A
LE

 IN
TE

R
PO

LA
TI

O
N

M
O

D
U

LE
S

(4
 M

O
TO

R
S/

M
O

D
U

LE
)

Copyright © 2001, Motion Engineering, Inc. 4 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
Figure 4. XMP Architecture for 16 Motors

U
p

to
 1

6
pe

r b
oa

rd

U
p

to
 1

6
pe

r s
ys

te
m

U
p

to
 4

8
pe

r s
ys

te
m

SH
AR

C
 s

ub
sy

st
em

is
 p

ar
t o

f t
he

 M
ai

n
bo

ar
d

2
Bo

ar
ds

16
 M

ot
or

s

T R
AN

SC
EI

VE
R

 I/
O

• S
te

p/
D

ire
ct

io
n

• C
W

/C
C

W
• P

os
iti

on
 C

ap
tu

re
• P

os
iti

on
 C

om
pa

re
• G

en
er

al
 P

ur
po

se

O
PT

IO
N

AL
 D

AC
S

S E
R

VO
 O

U
TP

U
TS

SR
AM

F L
AS

H
 M

EM
O

R
Y

B U
S

I N
TE

R
FA

C
E

(P
C

I O
R

 C
PC

I)

40
 M

bi
ts

/s
ec

 li
nk

Fo
ur

 M
od

ul
es

/S
ys

te
m

M
O

TI
O

N
 B

LO
C

K
S

(2
 P

ER
 B

O
AR

D
)

E N
C

O
D

ER
 I N

PU
TS

U
SE

R
 I/

O

D
ED

IC
AT

ED
 I/

O

Ex
pa

ns
io

n
Bo

ar
d

U
p

to
 2

0
pe

r s
ys

te
m

U
p

to
 1

6
pe

r s
ys

te
m

U
p

to
 8

4
pe

r s
ys

te
m

U
p

to
 1

6
pe

r s
ys

te
m

U
p

to
 8

pe
r b

oa
rd

O
pt

io
na

l

A N
AL

O
G

 I N
PU

TS
U

p
to

 8
D

at
a

Bu
s

SH
AR

C
D

SP
(3

2-
BI

T
FL

O
AT

IN
G

 P
O

IN
T)

M
O

TI
O

N
 B

LO
C

K

(1
 P

ER
 4

 M
O

TO
RS

,
2

PE
R

BO
AR

D
)

SI
M

4
SC

A
LE

 IN
TE

R
PO

LA
TI

O
N

M
O

D
U

LE
S

(4
 M

O
TO

R
S/

M
O

D
U

LE
)

(T
w

o
M

od
ul

es
/B

oa
rd

)

M
ai

n
Bo

ar
d

Copyright © 2001, Motion Engineering, Inc. 5 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
206.4 SIM4 BLOCK DIAGRAM
Connections to the SIM4 module are made through the standard input connectors.
The COS (cosine) signals are connected to ENCA (encoder A) inputs, the SIN
(sine) signals to the ENCB (encoder B) inputs, and the encoder index signals to the
ENCI (encoder index) inputs.
Motors are set up individually in interpolated or non-interpolated mode through the
MPI. Capture and Compare are handled in the same way for interpolated as for non-
interpolated configurations.
Figure 5. SIM4 Block Diagram

For encoders with sinusoidal outputs, the scale interpolation module provides
increased position resolution for up to 4 motors per SIM4. These outputs produce 1
cycle of sine and cosine analog signals for each scale line pair. At every sample, the
scale interpolation module reads the sine and cosine levels and determines the
angular position within the encoder’s line pair. The sine and cosine outputs are also
routed to the standard quadrature inputs, providing coarse position information.

XMP

A encoder
signals

B encoder
signals

Index
encoder
signal

Control
signal

B+

B-

A/D
Converter

Comparator

Op-amp

FPGA RAM

 SIM4

A+

A-

A/D
Converter

I+

I-

SIM4 Block Diagram
Copyright © 2001, Motion Engineering, Inc. 6 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
The quadrature inputs generate 4 counts for every line pair, while the 12-bit interpo-
lated value generates 4096 counts for each line pair. The full interpolated position is
obtained by combining the number of quadrant counts divided by 4, with the position
between two encoder lines. The 12-bit scale interpolation provides a resolution
increase of 1024 over the quadrature counters. To maintain accurate phase infor-
mation, the sine and cosine signals are captured with simultaneous-sampling A/D
converters.

Position Compare
To implement the position compare feature, the SIM4 compares the current position
to a position latched in the FPGA. The A/D converters convert continuously, with a
10 µsec latency.

• 10 compare registers are available per SIM4 (4 motors)
• Can compare 2 positions per servo cycle on 4 motors, or can compare

10 positions per servo cycle on 1 motor
• Delay from compare event to compare = 10 µsec

Maximum Count Rate
The maximum count rate of the SIM4 is determined by the rolloff of the analog input
stage of the SIM4. The 3 db point is at 200 kHz. The SIM4 will operate at higher fre-
quencies, but since the signal will be attenuated more at higher frequencies, the sig-
nal-to-noise ratio will go down. The highest frequency of operation will depend on
possible DC offsets in the raw signals.
Running the SIM4 at sin/cos frequencies above 200 kHz is not recommended.
Since each cycle produces 4096 counts, the recommended effective upper count
rate is 120,000 x 4096 counts/sec.

Position Capture
To implement the position capture feature, the SIM4 latches the full interpolated
position when the user-supplied latch signal is pulsed. Note that different motors
can be latched independently of each other.

• 10 capture registers are available per SIM4 (4 motors)
• Can capture 2 times per servo cycle on 4 motors, or can capture

10 times per servo cycle on 1 motor
• Delay from capture event to capture = 5 µsec

206.5 SIM4 HARDWARE INSTALLATION
The SIM4 module is a mezzanine-style module designed to plug directly into the
XMP control card; up to two SIM4 modules may be installed per board. A simple
procedure is used to install a module.
NOTE: For steps #2-5 below, observe all electrostatic discharge (ESD) precautions,
including use of a grounded ESD wristband and component mat. Failure to observe
ESD precautions may result in damage to the SIM4 module and/or the XMP control-
ler.
1. Power down all motion control equipment and the computer. Unplug all motion
control components from the controller.
2. Remove the XMP controller from your computer. Remove the SIM4 module from
its protective ESD bag, along with the two m2.5 x 6mm panhead screws, and stand-
off.
Copyright © 2001, Motion Engineering, Inc. 7 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
3. Depending on which axes use interpolation, one or both SIM4 modules will need
to be installed on the XMP Main Card. Up to 2 more additional SIM4 modules may
be added to the Expansion Card if necessary. Interpolation will only occur if the
SIM4 modules are connected to the corresponding axes. See sketch below.

4-7 SIM4

0-3 SIM4

XMP/PCI

XMP/PCI

8-11 SIM4

12-15 SIM4

EXPANSION
CARD

MAIN CARD

0-3 SIM4

4-7 SIM4

XMP/CPCI

XMP/CPCI

8-11 SIM4

12-15 SIM4

MAIN CARD

EXPANSION
CARD

(0-3)

(4-7)

(0-3)

(4-7)

(8-11)

(12-15)

(8-11)

(12-15)

(AXES)
Copyright © 2001, Motion Engineering, Inc. 8 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
4. Refer to the figure below for connection procedure.
Insert one m2.5 x 6mm panhead screw through the hole in the middle of the SIM4
board, then secure the hex stand-off to the underside of the SIM4 module. Do not
overtighten screw! Align the SIM4 module with the XMP controller as shown in the
figure below, and press the module into a pair of receptacles. (There is one molded
connector plug at each end of the SIM4 which mates with a corresponding recepta-
cle on the controller.) The SIM4 module must be oriented as shown in the figure to
function properly.
Insert a second m2.5 x 6mm panhead screw through the hole in the underside of
the XMP controller, then secure it to the stand-off between the XMP controller and
SIM4 module.

5. Reinstall the XMP controller with the SIM4 module into the computer. Connect all
cables and power up the system.

Stand-off

Screw

Screw

Orient SIM4 as shown.

SIM4 Module

XMP Controller

AXIS 0-3

AXIS 4-7
Copyright © 2001, Motion Engineering, Inc. 9 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
6. When wiring the Encoder (or Scale), the signals connect directly to the same
pins as a normal digital encoder. Connect the analog scale outputs into the stan-
dard quadrature inputs of the XMP. See the connection diagram below for an exam-
ple of how to wire up the encoder (or scale). Refer to XMP Hardware Installation
Manual for detailed connector pinouts.

ENCODER/ SCALE XMP

COS -

COS +

SIN +
SIN -

INDEX +
INDEX -

ENCO_A+

ENCO_A-

ENCO_B+
ENCO_B-

ENCO_I+
ENCO_I-

SIM4- Module
Copyright © 2001, Motion Engineering, Inc. 10 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
206.6 SIM4 CONFIGURATION
To operate the XMP with scale interpolation, the SIM4 module is installed onto the
XMP controller (see Section 206.5 above), and the XMP is configured for scale
interpolation. Configuring the XMP for SIM4 operation is illustrated in the sample
application Sim4.c.
The XMP can also be set up for SIM4 operation through Motion Console, by tog-
gling the SIM4 button in the Motor Summary / General Config screen.
After executing Sim4.c, the XMP returns position measurements with a resolution of
1024 times the quadrature resolution. The limits and filter parameters must there-
fore be adjusted to correspond to the higher count rate.
Once these steps are taken, the XMP is ready to operate in interpolated mode.
In interpolated mode, the Xmp/SIM4 determines the angular position at a given time
by sampling the sine and cosine signals simultaneously, and looking up the angle in
the arctan lookup table, located in the SIM4 flash. Ideally, the sine and cosine sig-
nals should have no DC offsets and should have equal amplitudes. If there are DC
offsets and amplitude differences, the angle obtained from the lookup table based
on the raw values will be incorrect. Under these conditions, increased accuracy is
obtained by calibrating the sinusoidal scale and compensating the sine and cosine
values before looking up the angle in the arctan lookup table as described below.
Copyright © 2001, Motion Engineering, Inc. 11 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
Compensation is illustrated in the series of figures below. Figure 8a shows the ideal
sine/cosine relationship. Figure 8b shows the case where the cosine amplitude is
larger than the sine amplitude, and where both sine and cosine have a DC offset.
Figure 8c shows the sine and cosine after compensation.

sin

cos

Figure 8a. Ideal sin/cos relationship.

sin DC offset

cos DC offset

sin Amplitude

cos Amplitude

0

0

Figure 8b. Imperfect sin/cos relationship
before compensation.

sin

cos

Compensated sin Amp sin Amp cos Amp
sin Amp
-----------------------×=

Compensated cos Amp cos Amp=

NOTE: if sin Amp cos Amp>

Compensated cos DC offset 0=

Compensated cos Amp Amp ×cos Ampsin
 Ampcos

------------------------=

Compensated sin DC offset 0=

Compensated sin Amp sin Amp=

Figure 8c. Imperfect sin/cos relationship after compensation.

Copyright © 2001, Motion Engineering, Inc. 12 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
The first part of the calibration process for a given motor consists of measuring the
DC offsets and the amplitude differences, then computing a set of compensation
lookup tables. This is done with Sim4Cal.c. This application moves the scale over a
short distance in the region of operation and determines the maximum and mini-
mum of each signal. One sine/cosine sample is collected every servo cycle. The
move distance should be long enough to encompass several cycles of the encoder
signals, and the velocity of the move should be low enough to sample at least 50
points per sine or cosine cycle. The compensation tables for sine and cosine are
stored in an output file.
The second part of the calibration consists of loading the compensation tables into
the flash on the sim4 module. This is done with Sim4Flsh.c.
The contents of the SIM4 flash are non-volatile. They will remain unchanged
through resets and power-downs. A compensation table can be replaced by an
improved one or by a unity-transfer-function table by a new execution of
Sim4Flsh.exe with the appropriate arguments. The unity-transfer-function compen-
sation table is generated by running Sim4Cal with the “nocal” argument.
If desired, the relevant sections of Sim4Cal.c and Sim4Flsh.c can be combined
within the user’s application code to perform scale calibration in-line.
The details of the programs follow.

206.7 SAMPLE APPLICATIONS
The sample application programs below can be used to configure and calibrate your
SIM4 module. All of them are found in the software tree shipped with your hardware.
The Sim4.c sample application is detailed in the MPI/XMP Sample Applications
Manual (P/N M001-0065).

• Sim4.c Sets up the XMP for SIM4 operation.
• Sim4Cal.c Obtains a compensation table for a single motor.
• Sim4Flsh.c Loads the arctan lookup tables and motor compensation

tables in the SIM4 flash.

Sim4.c
This sample application configures a motor for SIM4 operation and for capture on
the Encoder Index ANDed with ENCA and ENCB (included at end of this note).

Sim4Cal.c
This sample application computes the compensation tables for a SIM4 motor and
saves the data in a file.
The program assumes that the PID parameters, error limits and velocity tolerances
are set up prior to running this application. The program sets the relevant motor up
for SIM4 operation, sets up the Data Recorder, initiates a constant velocity move for
MAXRECORDS data points, computes the compensation tables, and writes them to
the output files in binary and ascii format. The default output file names are cal.abs
(binary form of compensation tables), cal.txt (ascii form of compensation tables) and
output.txt (ascii form of measured values).
Command line arguments:

• -motor # : specifies the motor
• -file <filename> : specifies the file name
• nocal : generates unity sine and cosine compensation tables
Copyright © 2001, Motion Engineering, Inc. 13 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
"Sim4Cal" without any arguments generates the compensation tables for sine and
cosine for motor 0 in the file cal.abs. An ascii version of the data is stored in cal.txt.
The raw values collected for sine and cosine are stored in output.txt.
"Sim4Cal -file <filename>" generates the compensation tables for motor 0 and
stores the data in files filename.abs, filename.txt and output.txt.
"Sim4Cal cal -motor # -file <filename> generates the compensation tables for motor
and stores the data in files filename.abs, filename.txt and output.txt.
"Sim4Cal nocal" generates unity transfer sine and cosine compensation lookup
tables (i.e. tables applicable for zero DC offsets and equal amplitude for sine and
cosine) and stores the data in files cal.abs, cal.txt and output.txt.

Sim4Flsh.c
This application loads the SIM4 flash with the arctan table and the sine and cosine
compensation tables. SIM4 uses the compensation tables to correct analog sine
and cosine inputs for DC offsets and for amplitude differences between the two sig-
nals. It then uses the arctan lookup table to obtain the interpolated position value
from the corrected sine and cosine inputs.

MEI distributes a default configuration of the flash (sim4.abs). The compensation
tables in the default configuration are unity transfer compensation tables for all
motors.

The SIM4 flash file is partitioned into areas for the arctan lookup table and the sine
and cosine compensation tables. There is a sine and cosine compensation table for
each motor. Sim4flsh can load the entire SIM4 flash area or a compensation table
for a single motor.

When Sim4Flsh is invoked without arguments, it expects to load the entire flash
area with a file named sim4.abs on Motion Block 0.

 To flash another MotionBlock, the –block argument is used. A different file name
can be specified with the –file option. A compensation table for a specific motor
can be loaded with the cal and -motor arguments. Compensation tables can be cre-
ated with the sim4cal program.

To create a file for the entire flash area, generate the necessary individual compen-
sation tables with the sim4cal program and load them into flash. Then use “sim4flsh
get –block #” to write the entire flash area into a file. The default file name is
sim4.abs. Take care not to overwrite the default configuration distributed by MEI.
Command line arguments:

• no arguments : load entire flash of a MotionBlock
• cal : load single compensation table
• -motor # : specifies the motor
• -block# : specifies the MotionBlock to write to or read from
• get : read entire flash of a MotionBlock
• -file <filename> : specifies a file to read from or write to

NOTE: -motor and -block are mutually exclusive: -motor is used in cal opera-
tions; -block is used in all other operations.
Copyright © 2001, Motion Engineering, Inc. 14 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
Examples
"sim4flsh" programs the entire flash for the SIM4 module on MotionBlock 0 with the
default file "sim4.abs".

"sim4flsh -block # " programs the entire flash for the SIM4 module on MotionBlock #
with the default file "sim4.abs".

"sim4flsh cal -motor # -file <filename>" loads a compensation table from the file “file-
name” for motor #.

"sim4flsh get" reads the entire flash on MotionBlock 0 and saves the data in the
default file "sim4.abs".

"sim4flsh get –block # -file <filename>" reads the entire flash for the SIM4 module
on MotionBlock # and saves the data in the file "filename".

WARNING: Sim4Flsh resets the controller.
Copyright © 2001, Motion Engineering, Inc. 15 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
Sample Application sim4.c
This section contains the sample application sim4.c.

/* sim4.c */

/* Copyright(c) 1991-1996 by Motion Engineering, Inc. All rights reserved.
 *
 * This software contains proprietary and confidential information of
 * Motion Engineering Inc., and its suppliers. Except as may be set forth
 * in the license agreement under which this software is supplied, use,
 * disclosure, or reproduction is prohibited without the prior express
 * written consent of Motion Engineering, Inc.
 */

#if defined(MEI_RCS)
static const char MEIAppRCS[] =

"$Header: /MainTree/XMPLib/XMP/app/sim4.c 6 2/16/00 4:29p Anns $";
#endif

/*
:Enable XMP SIM4 module and capture on [Index & ENCA & ENCB].

This sample application configures a motor for SIM4 operation and
capture on the Encoder Index ANDed with ENCA and ENCB.

The code assumes that motorN is associated with axisN.

Warning! This is a sample program to assist in the integration of the
 XMP motion controller with your application. It may not contain all
 of the logic and safety features that your application requires.

*/

#include <stdlib.h>
#include <stdio.h>

#include "stdmpi.h"
#include "stdmei.h"

#include "apputil.h"

#if defined(ARG_MAIN_RENAME)
#definemain sim4Main

argMainRENAME(main, sim4)
#endif

Configure and arm
SIM4 capture.

7. Disable Capture.

2. Create a Control Object and initialize it.

1. Parse Command Line for Control type/address

5. Configure for SIM4 interpolated encoder counts.

6. Calculate Capture Number, create Capture object

3. Set up a pointer to the Xmp data.
4. Create objects: Motor, Axis, Motion.

Create objects

for that Capture number.

and motor number.

8. Set Capture parameters for capture on SIM4 Index pulse
ANDed with Encoder A and Encoder B signals.

9. Configure Capture Mode.
10. Configure Home event.
11. Arm Capture.

12. Delete: Motion, Capture, Axis, Motor, Control. Delete objects
Copyright © 2001, Motion Engineering, Inc. 16 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D
/* Command line arguments and defaults */
long motorNumber= 0;

Arg argList[] = {
{ "-motor",ArgTypeLONG,&motorNumber,},

{ NULL, ArgTypeINVALID,NULL,}
};

/* User Settings */

#define ACTIVE_LOW_EDGE(0)
#define ACTIVE_HIGH_EDGE(1)

int
main(intargc,

 char *argv[])
{

/* For MotorBlock 0: */
MEIXmpServiceCmdCaptureMode[MEIXmpMAX_StandardMotors] ={

0x00020441,
0x0F0F8180,
0x00020441,
0x0F0F8382,
0x00020441,
0x0F0F8584,
0x00020441,
0x0F0F8786,

/* For MotorBlock 1: */
0x10020441,
0x0F0F8180,
0x10020441,
0x0F0F8382,
0x10020441,
0x0F0F8584,
0x10020441,
0x0F0F8786,

/* For MotorBlock 2: */
0x20020441,
0x0F0F8180,
0x20020441,
0x0F0F8382,
0x20020441,
0x0F0F8584,
0x20020441,
0x0F0F8786,

/* For MotorBlock 3: */
0x30020441,
0x0F0F8180,
0x30020441,
0x0F0F8382,
0x30020441,
0x0F0F8584,
0x30020441,
0x0F0F8786,

};

long captureActiveEdge = ACTIVE_HIGH_EDGE;

long returnValue;
long argIndex;
long captureNumber;
long blockNumber;
long motorInBlock;
Copyright © 2001, Motion Engineering, Inc. 17 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D

1

2

3

MPIControl control;
MPIAxis axis;
MPIMotor motor;
MEIMotorConfigmotorConfigXmp;
MPIControlTypecontrolType;
MPIControlAddresscontrolAddress;
MEIXmpData *Xmp;
MEIXmpBufferData*external;
MPICapture capture;
MPIMotion motion;
MPIMotorEventConfigeventConfig;
MPICaptureConfigcaptureConfig;

/* Parse command line for Control type and address */
argIndex =

argControl(argc,
 argv,
 &controlType,
 &controlAddress);

/* Parse command line for application-specific arguments */
while (argIndex < argc) {

long argIndexNew;

argIndexNew = argSet(argList, argIndex, argc, argv);

if (argIndexNew <= argIndex) {
argIndex = argIndexNew;
break;

}
else {

argIndex = argIndexNew;
}

}

/* Check for unknown/invalid command line arguments */
if ((argIndex < argc) ||

(motorNumber >= MEIXmpMAX_StandardMotors)) {
meiPlatformConsole("usage: %s %s\n"

 "\t\t[-motor # (0 .. %d)]\n",
argv[0],
ArgUSAGE,
MEIXmpMAX_StandardMotors - 1);

exit(MPIMessageARG_INVALID);
}

/* Obtain a Control handle. */
control =

mpiControlCreate(controlType,
 &controlAddress);

msgCHECK(mpiControlValidate(control));

/* Initialize the controller */
returnValue = mpiControlInit(control);
if (returnValue != MPIMessageOK) {

fprintf(stderr, "mpiControlInit(0x%x) returns 0x%x: %s\n",
control,
returnValue,
mpiMessage(returnValue, NULL));

exit(returnValue);
}

/* Set up the pointers to the Xmp and Buffer data */
returnValue =

mpiControlMemory(control,
&Xmp,
&external);

meiASSERT(returnValue == MPIMessageOK);
Copyright © 2001, Motion Engineering, Inc. 18 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D

4

5

6

7

/* Create motor object */
motor =

mpiMotorCreate(control,
 motorNumber);

msgCHECK(mpiMotorValidate(motor));

/* Create axis object */
axis =

mpiAxisCreate(control,
 motorNumber);

msgCHECK(mpiAxisValidate(axis));

/* Create motion object */
motion =

mpiMotionCreate(control,
motorNumber,
axis);

msgCHECK(mpiMotionValidate(motion));

/* Set up for SIM4 */
returnValue =

mpiMotorConfigGet(motor,
 NULL,
 &motorConfigXmp);

msgCHECK(returnValue);

motorConfigXmp.SIM4 = TRUE;

returnValue =
mpiMotorConfigSet(motor,

 NULL,
 &motorConfigXmp);

msgCHECK(returnValue);

/* Set up Capture for SIM4 */

/* Calculate default capture number for axisNumber */
captureNumber = (motorNumber/MEIXmpMotorsPerBlock) * MEIXmpMaxLatches +

(motorNumber % MEIXmpMotorsPerBlock) * 2;

/* Create capture object for captureNumber */
capture =

mpiCaptureCreate(control,
 captureNumber);

msgCHECK(mpiCaptureValidate(capture));

/* Disable capture */
returnValue =

mpiCaptureArm(capture,
 FALSE);

msgCHECK(returnValue);
meiPlatformSleep(100);
Copyright © 2001, Motion Engineering, Inc. 19 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D

8

9

10

11
/* Set capture parameters for trigger on SIM4 Index pulse & ENCA & ENCB*/
returnValue =

mpiCaptureConfigGet(capture,
&captureConfig,
NULL);

msgCHECK(returnValue);

captureConfig.trigger.mask =MEIMotorInputSIM4_INDEX |
MEIMotorInputSIM4_ENCB |
MEIMotorInputSIM4_ENCA;

captureConfig.trigger.pattern = captureActiveEdge ? (MEIMotorInputSIM4_INDEX |
 MEIMotorInputSIM4_ENCB |
 MEIMotorInputSIM4_ENCA) : 0;

returnValue =
mpiCaptureConfigSet(capture,

&captureConfig,
NULL);

msgCHECK(returnValue);

/* Configure CaptureMode */
blockNumber = motorNumber / MEIXmpMotorsPerBlock;
motorInBlock = motorNumber % MEIXmpMotorsPerBlock;
returnValue =

meiControlServiceCommand(control,
&external->ServiceCmdBuffer.
Block[blockNumber].Capture.CaptureMode[motorInBlock],
&CaptureMode[motorNumber],
1,
&Xmp->Block[blockNumber].ServiceCtrl,
MPIWaitMSEC * 1000);

msgCHECK(returnValue);

/* Configure Home Event action */
returnValue =

mpiMotorEventConfigGet(motor,
 MPIEventTypeHOME,
 &eventConfig,
 NULL);

msgCHECK(returnValue);

eventConfig.action = MPIActionNONE;/* no event */
eventConfig.trigger.polarity = TRUE;

returnValue =
mpiMotorEventConfigSet(motor,

 MPIEventTypeHOME,
 &eventConfig,
 NULL);

msgCHECK(returnValue);

/* Arm the capture */
returnValue =

mpiCaptureArm(capture,
 TRUE);

msgCHECK(returnValue);
meiPlatformSleep(100);
Copyright © 2001, Motion Engineering, Inc. 20 of 21

Doc. No. 9D00-0106 Application Note 206, Rev. D

12
/* Delete the handles */
returnValue = mpiMotionDelete(motion);
msgCHECK(returnValue);

returnValue = mpiCaptureDelete(capture);
msgCHECK(returnValue);

returnValue = mpiAxisDelete(axis);
msgCHECK(returnValue);

returnValue = mpiMotorDelete(motor);
msgCHECK(returnValue);

returnValue = mpiControlDelete(control);
msgCHECK(returnValue);

 return ((int)returnValue);
}

Copyright © 2001, Motion Engineering, Inc. 21 of 21

	Contents
	206.1 Introduction
	Figure 1. SIM4 Scale Interpolation in a Typical Control System

	206.2 About Scale Interpolation
	Figure 2. Scale Interpolation of Encoder Pulses

	206.3 SIM4 Architecture
	Figure 3. XMP Architecture for 8 Motors
	Figure 4. XMP Architecture for 16 Motors

	206.4 SIM4 Block Diagram
	Figure 5. SIM4 Block Diagram

	206.5 SIM4 Hardware Installation
	206.6 SIM4 Configuration
	206.7 Sample Applications

