
Cop

33 South La Patera Lane
Santa Barbara, CA 93117-3214
ph (805) 681-3300
fax (805) 681-3311
tech@motioneng.com
www.motioneng.com

APPLICATION NOTE 208, REV. A
PT and PVT Path Motion for the XMP
CONTENTS
Section and Title Page No.
208.1. General Characteristics ... 1
208.2. PT Algorithm .. 2
 Simple PT Example... 3
208.3. PVT Algorithm.. 4
 Simple PVT Example .. 5
208.4. Test Cases ... 7
208.5 PT Interpolation... 8
208.6 PVT Interpolation .. 12

This document describes the position-time (PT) and position-velocity-time (PVT)
path interpolation algorithms for the XMP controller. Presently, the algorithms are
fully supported in the MPI/XMP software/firmware release. A technical description of
each algorithm pointing out the advantages and disadvantages is contained in the
following sections of this document.

208.1 GENERAL CHARACTERISTICS

PT and PVT algorithms convert a series of point-time pairs into XMP motion frames
that create the real-time command positions at each sample during the time inter-
vals between the point-time pairs. The PVT interpolation type requires additional
data at each point (the vector velocity). A “point” in these point-time series may have
several dimensions (axes).
yright © 2000, Motion Engineering, Inc. 1 of 15

Document Revision History: Application Note 208

Rev. Date Description DCR No.

A 2000JAN20 Released. 312

Application Note 208, Rev. A
208.2 PT ALGORITHM

The PT algorithm fits a simple constant velocity profile between the user specified
“Position and Time” points. The PT algorithm guarantees that the XMP’s trajectory
calculator will exactly hit each specified position at the specified time. The constant
velocity segment is simply calculated by the difference of the positions divided by
the time interval:

Figure 1. PT algorithm.

Time

Time

n

n + 1

Xn

Xn+1

Vn+1

Tn+1

Distance = Xn+1 - Xn

Vn 1+
Xn 1+ Xn–()

Tn 1+
--------------------------------=

Point Position Time
n Xn Tn
n + 1 Xn+1 Tn+1

Ve
lo

ci
ty

Po
si

tio
n

Copyright © 2000, Motion Engineering, Inc. 2 of 15

Application Note 208, Rev. A
Simple PT Example
For example, a trapezoidal velocity profile motion could be generated using a list of
Position and Time points:

Figure 2. PT profile (trapezoidal).

When is the PT algorithm useful?
The PT algorithm is very good for closely spaced points or low velocities. It is a very
simple algorithm, requiring very few calculations; therefore, it is fast. It works well
with low performance motion systems. If the points are spaced too far apart, the
motion will be rough, because the acceleration between each point is instanta-
neous. It is best to keep the point spacing within a few samples. The XMP-Series
default sample rate is 500 microseconds.

Time

Point Position Time
0 X0 T0
1 X1 T1

Ve
lo

ci
ty

2 X2 T2
3 X3 T3
4 X4 T4
5 X5 T5
6 X6 T6

0 1 2 3 4 5 6

T0 T1 T2 T3 T4 T5 T6

V0

V1

V2

V3
Copyright © 2000, Motion Engineering, Inc. 3 of 15

Application Note 208, Rev. A
208.3 PVT ALGORITHM
The PVT algorithm fits a Jerk (non-constant acceleration) profile between user
specified “Position, Velocity and Time” points. The PVT algorithm guarantees that
the XMP’s trajectory calculator will exactly hit each specified position, with each
specified velocity, at the specified time.

Figure 3. PVT algorithm.
For each point, the PVT algorithm calculates the Acceleration and Jerk values to
exactly hit the specified Position and Velocity at the next point. The equations for An
and Jn, are derived from the standard kinematic equations:

Xn+1 = Xn + Vn * Tn + ½ * An * Tn
2 + 1/6 * Jn * Tn

3

Vn+1 = Vn + An * Tn + ½ * Jn * Tn
2

The derivation of the kinematic equations in terms of An and Jn is beyond the scope
of this document.

Time

Time

n

n + 1

Xn

Xn+1

Vn+1

Tn+1

Distance = Xn+1 - Xn

Point Position Time
n Xn Tn
n + 1 Xn+1 Tn+1

Vn

Jn+1

Velocity
Vn
Vn+1

A n

An+1

Po
si

tio
n

Ve
lo

ci
ty
Copyright © 2000, Motion Engineering, Inc. 4 of 15

Application Note 208, Rev. A
Simple PVT Example
For example, a trapezoidal velocity profile motion could be generated using a list of
three Position, Velocity and Time points:

Figure 4. PVT profile (trapezoidal).
How do you calculate the Velocities for PVT paths?
There are several methods to calculate the velocities, depending on the desired
path profile. Here are some common methods:
1) Calculate the change in distance between two points divided by the time:

Vn+1 = (Xn+1 - Xn) / Tn
This is a simple method, with relatively smooth performance. You will need to add
an extra final point to the list, setting the last velocity to zero.
2) Calculate a constant acceleration fit between points.
From the kinematic equations (with Jerk = 0), we know:

(a) Xn+1 = Xn + Vn * Tn + ½ * An * Tn
2 (b) Vn+1 = Vn + An * Tn

substitute (b) into (a), and solve for Vn+1

Vn+1 = (2/ Tn) * (Xn+1 - Xn - Vn * Tn) + Vn
There are several other methods that can be used to calculate the velocities. Addi-
tionally, there are many other algorithms, like averaging and splines that can be
applied to PVT.

Time
T1

Point Position Time
0 X0 T0
1 X1 T1

V0 = V1

Velocity
V0
V1

Ve
lo

ci
ty

2 X2 T2V2

T0 T20 1 2
V2 = 0
Copyright © 2000, Motion Engineering, Inc. 5 of 15

Application Note 208, Rev. A
What happens if the Velocities are calculated improperly for PVT paths?
The PVT algorithm doesn’t care if the Position, Velocity, Time points are matched
properly. The PVT algorithm will simply calculate a Jerk profile between points to
reach the specified point. The profile between the points may not be desired, but it
will be accurate.
For example, consider the simple three point trapezoidal profile from Figure 4. If the
velocities at points 0 and 1 were too small, the profile would stretch to cover the
proper distance (area under the curve):

Figure 5. PVT profile, velocities too low.
If the velocities at points 0 and 1 were too big, the profile would shrink to cover the
proper distance (area under the curve):

Figure 6. PVT profile, velocities too high.

Time
T1

V0 = V1

Ve
lo

ci
ty

T0 T20 1 2

Time
T1

V0 = V1

Ve
lo

ci
ty

T0 T20 1 2
Copyright © 2000, Motion Engineering, Inc. 6 of 15

Application Note 208, Rev. A
When is the PVT algorithm useful?
The PVT algorithm is very good for smooth and close path control. The points can
be spaced very close or very far apart. For complex paths (or path portions) the
points should be spaced close together. For simple paths (or path portions) the
points can be spaced far apart. PVT can handle virtually any list of points. The most
difficult part is determining the appropriate velocities at each point.

208.4 TEST CASES
Three types of point-time series (step, zigzag, and octagon) were used to evaluate
the paths created by the PT/PVT algorithms. Most higher order (polynomial) interpo-
lation algorithms are better suited for describing continuously curved sections of
paths than sections with straight lines and sharp corners. The step and zigzag path
tests determine how well an algorithm behaves when the path was not very appro-
priate for high-order polynomials. The octagon path tests how well the algorithms
interpolate circular sections of a path given a small number (8) of points around the
circle.
The simplest path studied was a one-dimensional step. The following point-time
series was used to test the interpolation:

The step is useful for determining if the algorithm is going to have problems in sec-
tions of a path with sharp corners. The amount of overshoot (if any), the closeness
to lines joining the points, and accelerations and velocities near the step can be
evaluated. The step is also useful for determining how much of the path will be
affected by a sharp corner (at what distance from the step does the path return to a
straight line). For example steps affect Cubic spline interpolation over the entire
path, where PT interpolation is only affected at the two points closest to the step.

Table 1: Point-time Series for Testing Interpolation

Time (samples) Position (counts) Velocity (PVT only)

0 0 0

500 0 0

1000 0 0

1500 0 0

2000 5000 0

2500 5000 0

3000 5000 0

3500 5000 0
Copyright © 2000, Motion Engineering, Inc. 7 of 15

Application Note 208, Rev. A
The zigzag path (really a reversed “Z”) was used to evaluate sharp corner behavior
in a two-dimensional (X-Y) path. The following point list formed the zigzag path:

The octagon path determines how well the interpolation algorithms are suited for
circular sections of a path. The nine points along the path are on a circle with a
radius of 5000 counts, centered at 0,5000. The first and last points are the same (at
0,0 the 6 o’clock position) and the points are spaced at angles of 45 degrees.

208.5 PT INTERPOLATION
This is the simplest form of interpolation. The interpolation is linear (first order).
While the path is mathematically continuous, velocity, acceleration, and jerk are not.
The lines between points are straight and are traversed at constant speed. PT
motion will usually be rough unless the points are very closely spaced in time or the
velocities are very low.
Step behavior:

Time (samples) X, Y (counts) Vx, Vy (counts/sec., PVT only)

0 0, 0 0, 0

500 5000, 0 20000, 0

1000 0, 10000 20000, 0

1500 5000, 1000 0, 0
Copyright © 2000, Motion Engineering, Inc. 8 of 15

Application Note 208, Rev. A
Copyright © 2000, Motion Engineering, Inc. 9 of 15

Application Note 208, Rev. A
PT motion is well suited for paths composed of straight lines and sharp corners. The
only serious problem with PT motion is the large number of points required to limit
the peak accelerations. In this example the peak acceleration was 40 million c/sec/
sec.
Zigzag path behavior:

The path is simply straight lines joining the points.
Copyright © 2000, Motion Engineering, Inc. 10 of 15

Application Note 208, Rev. A
Octagon path:

Again, the path consists of simple straight lines. Radial error is the difference
between he distance from the interpolated path to the center from the radius of a cir-
cle through the points. The largest error is midway between the points.
Copyright © 2000, Motion Engineering, Inc. 11 of 15

Application Note 208, Rev. A
208.6 PVT INTERPOLATION
PVT paths are third order (cubic) rather than first order (e. g. PT paths). The position
and velocity are continuous, the acceleration and jerk are not. PVT paths tend to be
much smoother than PT paths, but the velocity of each axis needs to be provided at
each of the supplied points. This can increase the complexity of the application
since the velocity at each point is often difficult to determine.
Step behavior:
Copyright © 2000, Motion Engineering, Inc. 12 of 15

Application Note 208, Rev. A
Copyright © 2000, Motion Engineering, Inc. 13 of 15

Application Note 208, Rev. A
Zigzag behavior:

Position

-2000

0

2000

4000

6000

8000

10000

12000

-1000 1000 3000 5000X

PT
PVT
Copyright © 2000, Motion Engineering, Inc. 14 of 15

Application Note 208, Rev. A
Octagon behavior:

The larger error in the first and last segments is caused by the V=0 constraints at
the end points.

Octagon

-1000

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

-6000 -5000 -4000 -3000 -2000 -1000 0 1000 2000 3000 4000 5000 6000
X

PT
PVT
Copyright © 2000, Motion Engineering, Inc. 15 of 15

	208.1 General characteristics
	208.2 PT Algorithm
	Figure 1. PT algorithm.
	Simple PT Example
	Figure 2. PT profile (trapezoidal).

	208.3 PVT Algorithm
	Figure 3. PVT algorithm.
	Simple PVT Example
	Figure 4. PVT profile (trapezoidal).
	Figure 5. PVT profile, velocities too low.
	Figure 6. PVT profile, velocities too high.

	208.4 Test Cases
	Table 1: Point-time Series for Testing Interpolation

	208.5 PT Interpolation
	208.6 PVT Interpolation

