
33 South La Patera Lane
Santa Barbara, CA 93117-3214
ph (805) 681-3300
fax (805) 681-3311
tech@motioneng.com
www.motioneng.com

Release Note
MPI/XMP

Firmware and Library
XMP Firmware Version 371A5 MPI Library Version 20020117.1.6.1.3 Revised 12Sep2008

DCR 798
1 Introduction
Welcome to the latest release of Motion Engineering’s MPI/XMP Firmware and Motion Programming Inter-
face Library. This distribution has been prepared for Windows® NT 4.0, Windows® 2000 and Windows® 95/
98. The distribution was built using Visual C++ v4.2 and tested using Visual C++ v6.0. This document pro-
vides an overview of the release, and describes the new features, changes and bug fixes between the fol-
lowing versions:

This document contains proprietary and confidential information of Motion Engineering, Inc.,
and is protected by federal copyright law. The contents of the document may not be dis-
closed to third parties, translated, copied, or duplicated in any form, in whole of in part, with-
out the express written permission of Motion Engineering, Inc.

Previous Version New Version
Firmware 371A5 371A5
MPI Library 20020117.1.6.1.2 20020117.1.6.1.3

 INTRODUCING MEI’S NEW
 ON-LINE DOCUMENTATION SYSTEM

 Featuring:
• Up-to-Date Documentation
• Dynamic Hyperlinks
• Complete Search Functionality
• Sample Code that you can copy and paste
• Print-friendly PDFs

http://support1.motioneng.com
Guaranteed to help you find
the right information...faster!
Standard Release Note, Ver. 20020117.1.6.1.3 1 of 104

1.1 System Requirements

1.1.1 Operating System

The MPI release is built to operate on Windows® NT 4.0, Windows® 2000 or Windows® 95/98.

1.1.2 Visual C++ DLLs

The MPI is built using Microsoft Visual C++ 4.2. No Microsoft Visual C++ DLLs are included with this
release. These DLLs are required in order to run programs built with the MPI. These DLLs work with
Microsoft Visual C++ 4.2 - 6.

1.2 Installing the Distribution
WARNING! You must reboot your system!
If you have not used a InstallShield for Windows Installer program before, the MEI Install Shield will need
to install InstallShield installer files before actually installing the MDK. You will have to reboot your system
after these files are installed. Please shut down all programs before running the InstallShield for the first
time. For first-time installations of an MEI controller and accompanying software, please see the QuickStart
Guide located on the distribution CD.

WARNING! If you are upgrading from a previous MPI/XMP software release, you will need to remove or
archive all previous releases. This will prevent any conflicts between old and new files. To remove the
previous MPI/XMP software release, select Start -> Control Panel -> Add/Remove Programs. Select the
MPI/XMP Development Toolkit entry and click on the Add/Remove button.
NOTE: The MPI/XMP software release can also be removed by running the MDK InstallShield and choos-
ing the remove option.
For more information on installing the MPI/XMP software release, please see the QuickStart Guide.

The XMP-PULSE is now supported by the MPI Library
The XMP-PULSE-PCI motion controller is designed as a cost-effective, XMP-series
motion controller specifically designed for pulse (step/direction) control drives having up
to 32 axes. For a detailed explanation of its specifications and features, please see
Application Note 218, Rev. A. For further information, please contact Motion Engi-
neering, Inc.
2 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

The MPI/XMP distribution comes in two parts. The first part is an InstallShield distribution. Key components
of the distribution are:

• device driver (meixmp.sys for WinNT, meixmp.vxd for Win95)
• firmware
• MPI dynamic link library
• utilities
• sample applications

To install the MPI/XMP software release, insert the MDK CD-ROM. The set-up InstallShield will be
launched automatically. Follow the InstallShield instructions. The InstallShield will take care of installing the
DLL and will also set the PATH environment variable to XMP\bin\WinNT for WinNT and Win2000, or XMP/
bin/Windows for Win95/98 under the default installation directory (C:\MEI).

The second component of this distribution contains customer-specific applications and files. This is pro-
vided to you in a separate InstallShield. To install this custom component, click on the InstallShield (default
C:\MEI) and follow the instructions.

By default, files will be located in the C:\MEI\Custom directory. To install into an alternate directory, select
the custom option during the installation process and change the default directory to the one you prefer.
Standard Release Note, Ver. 20020117.1.6.1.3 3 of 104

2 General Changes
This section lists changes since the 20000913 production release, beginning with the most recent.

2.1 Addtion of Multiple Injection Point
 Noise Source to xmp firmware MPI 899
In firmware version "371A5," a noise source input was added. This feature can be used to inject noise into
the control loop of a specific axis to generate a bode plot of the physical system. This functionality can be
accessed using MEI's bode tool software versions 01.02.01 and later.

WARNING!: This tool should never be used during a system's normal operation - system instability may
result.

2.2 Multi-Point Motion Buffering Improvements MPI 889
Changes have been made to the 20020117.1.3 release to streamline the loading of points lists. Now, only
the initial point list is loaded by the host. Now, Motion Modifies only append to the host's point list and does
not initiate a load. The eventMgr service thread (as supplied by the service module of apputil) performs all
subsequent point list loads upon internal "frame low" events. Frame low events are now generated every
sample that the controller has less points than the frame low limit. These changes were implemented in
version 20020117.1.4.

2.3 New On-Line Documentation System
MEI would like to introduce its new On-Line Documentation System. This html-based documentation sys-
tem will dramatically improve your ability to navigate through the technical documentation and find the
information that you need. The web site will be accessible and functional through the Internet (http://
support1.motioneng.com) and through our Install Shield CD-ROM, which will allow any computer to use
the web site without a network connection. There are several new features including: conditional pulldown
menu bars, keyword search functionality, new sample applications, a PDF/Notes section, and dynamic
hyperlinking throughout the site. To learn more about the features of this site and how you can best opti-
mize your time and effort, simply click on the “How to use this Site” link which is on the home page and
take a minute to read the page. This section will help you understand how the site is structured and how
you can fully take advantage of this new documentation system.

2.4 New Default XMP-Series Controller Configuration MPI 667
The XMP-Series controller’s Flash memory is now pre-loaded at the factory with base firmware. This firm-
ware contains a minimal amount of code to boot the DSP and allows the MPI to identify the XMP-Series
controller. To operate the controller you will need to download the binary code included in this MPI soft-
ware distribution. Please see the sections below for a complete description about software binary man-
agement and instructions to download firmware to your controller.
4 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Introduction
System designers need to give careful consideration to the software configuration management proce-
dures for their machines. To ensure machine consistency and quality, a process for software installation,
configuration, version control, and verification must be implemented. Addressing this issue early in the
development cycle will significantly reduce confusion and mistakes. Failure to implement some basic pro-
cedures can cause unknown machine configurations, costly field repairs/upgrades, mysterious intermittent
problems, broken equipment, and possible injury.

The MPI and XMP-Series controllers contain several features to make configuration management easy.
Please take the time to understand and implement these features before you begin development.

Software Components

The MEI software distribution contains several software components, which need to be loaded onto your
machine and controller. The MPI DLL, header files, import libraries, device driver, utility programs, control-
ler binaries, sample code, etc. These are all loaded onto your hard drive by the InstallShield distribution.
Additionally, the controller contains on-board flash memory to store DSP code, FPGA code, and configura-
tion information. You will also need to load the appropriate DSP (.bin) and FPGA (.fpg) code into your con-
troller’s flash memory. The code is loaded into the DSP and FPGA(s) during power-on or when the
controller is reset.

Version Control

Each software component has its own version number. These components have been tested together at
the factory for interoperability.

The software version numbers have the following format:

Motion Console NN.NN.nn Major, Medium, minor
Motion Scope NN.NN.nn Major, Medium, minor
MPI DLL YYYYMMDD.b…r Year, Month, Day, branch, … rev
XMP Firmware NNNnn Major, minor
FPGA Code RRR Revision

The software has automated compatibility checking. If there is a compatibility problem between software
components an error code will be returned.

If an application (Motion Console and Motion Scope are applications too) and MPI DLL are NOT compati-
ble, the error message "Control: application not compatible with MPI DLL" will be returned. To correct this
problem, you can recompile your application with the appropriate MPI import library OR install the proper
MPI DLL.

If the MPI DLL and firmware versions are NOT compatible, the error message "Control: firmware version
mismatch" will be returned. The user or application must download the appropriate firmware to correct the
problem. The DLL and firmware versions can be determined with the version.exe utility, Motion Console,
or application code.
Standard Release Note, Ver. 20020117.1.6.1.3 5 of 104

If the controller flash memory has NOT been configured, the error message "Control: no firmware
found (factory default)" will be returned. To correct this problem, the user or application must down-
load the appropriate XMP firmware and FPGA images. Firmware and FPGA images can be down-
loaded from Motion Console, flash.exe, or application code.

For example, if Motion Console detects that the controller is in the factory default configuration (no
firmware) or if the MPI DLL is not compatible with the firmware, it will prompt the user to download firm-
ware:

Click “Yes”. Motion Console will then prompt you for the firmware file:

Click “Browse…” and select the appropriate firmware file (.bin). The firmware is stored in the
mei\xmp\bin directory (by default):
6 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Select the proper file and click “Open.”

Now download your firmware file by clicking “OK.”

Automated Software Configuration

During your machine development, several different versions of MPI DLLs and/or XMP firmware might be
used. You may want to upgrade to new releases to take advantage of new features, MEI may provide cus-
tom features or bug patches for previous releases.

During your machine production, you will want to guarantee software configuration consistency. MEI rec-
ommends using the InstallShield release package, a third party installer program, or batch scripts to install
your application code and MEI’s software onto your machine.

You will also want to guarantee that the controller’s flash memory configuration is consistent. To load the
flash, you could automatically download firmware (.bin) and FPGA (.fpg) code during software installation
OR during your application initialization. For example, the flash.exe program could be executed from an
installer or batch script during software installation. Included in the XMP\Apps directory, is a sample pro-
Standard Release Note, Ver. 20020117.1.6.1.3 7 of 104

gram called “initFlsh.c” that demonstrates how to read the controller’s firmware/FPGA versions, check if
they match the desired configuration, and download the correct versions (if needed).

Also, you can create your own custom firmware file by saving configurations to flash, and uploading the
firmware file to your hard drive. The firmware contains a “userVersion” field, so you can keep track of your
custom configured files. Using this technique, the firmware can be configured with Motion Console,
uploaded to a file (myfirm.bin) and downloaded to future machines using Motion Console, flash.exe or your
application.

Frequently Asked Questions

Why do I need to download firmware to my controller?
Only the machine developer knows which firmware version and configuration works with their application.
By downloading firmware directly, you have complete control over your development and release versions.

Why can’t MEI download firmware to my controller at the factory?
MEI can download your firmware, but it is expensive and causes several problems:

1) You would need a custom part number for each controller with a different firmware image. Even
if you use the same controller hardware in several machines, each version would need to be
ordered, purchased, tracked, and stocked separately.

2) Changing a firmware image (version or configuration) would require a new part number. This
causes transition problems between “old” and “new” parts.

3) Repairs and replacements are much more complicated.
4) Field upgrades are not possible. Controllers must be returned to the factory to receive new firm-

ware and a new part number.

What if I need to upgrade software in the field?
If you configure the flash memory as part of your application or installation, then it is very easy to upgrade
software and/or firmware in the field. If you do not, then you’ll need to manually update the flash memory.

Can I modify the FPGA (.fpg) files?
No. These files are binary and do not contain any configuration data.

2.5 New UserVersion in MPIControlConfig{...} MPI 538
A new element, UserVersion has been added to the MPIControlConfig{...} structure. This feature allows
the user to mark a firmware image with a user-defineable version number. This was added in version
20010614.

2.6 Changed DAC level units to volts MPI 535
In version 20010622, the DAC level was changed from DAC units to volts. The MEIMotorDacStatus{...}
structure contains the DAC level for cmd and aux DACs. meiMotorStatus(...) is used to read the cmd and
aux DAC level from the controller.
8 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

2.7 Addition of Branch identification to Firmware/MPI version MPI704
A new field has been added to the XMP's firmware to identify and differentiate between intermediate
branch software revisions. The branch value is represented as a hex number between 0x00000000 and
0xFFFFFFFF. Each digit represents an instance of a branch (0x1 to 0xF). A single digit represents a sin-
gle branch from a specific version, two digits represent a branch of a branch, three digits represent a
branch of a branch of a branch, etc.

2.8 Path Motion works with all Interpolation Algorithms MPI660
In previous versions, path trajectory generation was only supported by bsplines. Path trajectory genera-
tion is now supported by PT, PVT, SPLINE, BESSEL, BSPLINE and BSPLINE2 algorithms. Blending of
the corners is only available for the 2 bspline algorithms. Blending of a corner is when the path does not hit
the corner but goes through a smooth arc.

2.9 Flash Utility Now Supports Flash from
File Interface Changes MPI629
The XMP-Series controllers have on-board flash memory to store code and configuration data for the DSP,
and fuse maps for the FPGAs. In previous versions, the DSP and FPGA code were stored in a single flash
file (XMPxxxxx.bin). Now, the DSP code/data are stored in one file (XMPxxxxx.bin) and the FPGA code is
stored in separate files (xxx_xxxx.fpg). This change was required in order to support several different
XMP-Series controller platforms, each with different FPGAs, but all with the same flash memory compo-
nent. This feature makes it possible to download custom FPGA files.

If your application downloads a Flash file (.bin), you will need to update your application code to download
the DSP (.bin) and FPGA (.fpg) code. The flash.exe utility sources demonstrate how to implement this into
your application. You must make sure the DSP (.bin) and ALL FPGA (.fpg) files are installed on the host
computer for downloading. The FPGA and DSP files must be in the same directory or flash must be called
with -FPGAx option, specifying the path to the FPGA file.
Here is the output from the OLD flash.exe operation.

Here is the NEW flash.exe command line options and operation. Notice, that flash.exe automatically
determines the XMP hardware configuration and downloads the appropriate .fpg files:
Standard Release Note, Ver. 20020117.1.6.1.3 9 of 104

Options

Operation

2.10 Flash from File Interface Change MPI595
In previous versions, the DSP and FPGA code were stored in a single flash file (XMPxxxxx.bin). Now, the
DSP code/data are stored in one file (XMPxxxxx.bin) and the FPGA code is stored in separate files
(xxx_xxxx.fpg). This change was required to support several different XMP-Series controller platforms,
each with different FPGAs, but all with the same flash memory component.

To support this change, the "Flash Memory" methods were changed in version 20010216. Here are the
changes (from stdmei.h):

#define MEIFlashFileMaxNameChars(12)/* 8.3 format */
#define MEIFlashFileMaxChars(120)
#define MEIFlashFileMaxPathChars(MEIFlashFileMaxChars - MEIFlashFileMaxNameChars)

typedef struct MEIFlashFiles {
char binFile[MEIFlashFileMaxChars];
char FPGAFile[MEIXmpFlashMaxFPGAFiles][MEIFlashFileMaxChars];

} MEIFlashFiles;
10 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MPI_DECL1 long MPI_DECL2
meiFlashMemoryFromFileAndVerify(MEIFlash flash,

 MEIFlashFiles *filesIn,
 MEIFlashFiles *filesOut);

You provide the filesIn with a valid binFile. If the FPGAFiles are NULL, then the MPI Library will automati-
cally generate the default file names for the FPGAs from the hardware info on the board and the path from
the binFile. Otherwise, you can specify FPGA files (up to 3 MEIXmpFlashMaxFPGAFiles), including the
path. The file order in MEIFlashFiles.FPGAFile[...] is not important. If the file name is not correct or does
not match the controller hardware, an error code is returned and the offending file name will be placed in
the filesOut (if it is not NULL) structure.

If meiFlashMemoryFromFile(...) returns MPIMessageOK, then filesOut (if it was not NULL) will contain the
files and paths of the bin and FPGA files that were loaded and verified. If an error is returned, then filesOut
(if it was not NULL) will contain the bin and FPGA files that either were not found or could not be loaded
(the error code tells you the result). Internally, the verify is required to update the table in the data portion
of the flash image with valid pointers to the FPGA images.

In flash.h, meiFlashMemoryFromFile(...) has been extended to support both binFile and FPGAFile types.
meiFlashVerify(...) was removed, but it's functionality was moved into meiFlashMemoryFromFileAndVer-
ify(...).

2.11 Dac Object Removed MPI628
The Dac object has been removed. The Dac object features have been moved into the Motor object. The
Dac numbering has been changed. New methods have been added to write to a Dac’s offset and read a
Dac’s level. The MPIControlConfig structure has been modified to support the new Dac numbering.
These changes were required to support new controller models and simplify the MPI.

In previous versions, each Dac object supported a single channel, which was numbered 0, 1, 2, … 31. The
XMP controller can have up to two Dacs per axis. One channel is for standard servo control and the other
channel is an auxiliary, OR both channels are used for sinusoidal commutation. The number of enabled
Dacs (0 to 32) was configured by specifying the dacCount in the MPIControlConfig{…} structure.

The MEIMotorConfig{…} structure has been extended to include a new MEIMotorDacConfig{…} structure.
Each MEIMotorDacConfig{…} structure contains a Cmd and an Aux MEIMotorDacChannelConfig{…}
structure:

typedef struct MEIMotorDacChannelConfig {
float Offset; /* volts */
float Scale;
MEIXmpDACInputType InputType;
MEIXmpGenericValue *Input;

} MEIMotorDacChannelConfig;

typedef struct MEIMotorDacConfig {
MEIXmpDACPhase Phase;
MEIMotorDacChannelConfig Cmd;
MEIMotorDacChannelConfig Aux;

} MEIMotorDacConfig;
Standard Release Note, Ver. 20020117.1.6.1.3 11 of 104

To read a Dac’s offset or write a Dac’s offset, use the new methods:

meiMotorDacConfigGet(MPIMotor motor,
 MEIMotorDacConfig *dacConfig,
 MEIFlash flash);

meiMotorDacConfigSet(MPIMotor motor,
 MEIMotorDacConfig *dacConfig,
 MEIFlash flash);

The MEIMotorStatus{…} structure has been extended to include a new MEIMotorDacStatus{…} structure.
Each MEIMotorDacStatus{…} structure contains a cmd and an aux MEIMotorDacChannelStatus{…} struc-
ture:

typedef struct MEIMotorDacChannelStatus {
float level; /* volts */

} MEIMotorDacChannelStatus;

typedef struct MEIMotorDacStatus {
MEIMotorDacChannelStatus cmd;
MEIMotorDacChannelStatus aux;

} MEIMotorDacStatus;

typedef struct MEIMotorStatus {
MEIMotorDacStatus dac;

} MEIMotorStatus;

To read a Dac’s level, use meiMotorStatus(…).

Since the MPI has changed, the Dac numbering is different:

OLD MPI NEW MPI NEW MPI

Hardware Signal Dac Number Motor Number Dac Channel

Cmd_Dac_Out_0 0 0 Cmd

Aux_Dac_Out_0 16 0 Aux

Cmd_Dac_Out_1 1 1 Cmd

Aux_Dac_Out_1 17 1 Aux

Cmd_Dac_Out_2 2 2 Cmd

Aux_Dac_Out_2 18 2 Aux

Cmd_Dac_Out_3 3 3 Cmd

Aux_Dac_Out_3 19 3 Aux

Cmd_Dac_Out_4 4 4 Cmd

Aux_Dac_Out_4 20 4 Aux

Cmd_Dac_Out_5 5 5 Cmd

Aux_Dac_Out_5 21 5 Aux

Cmd_Dac_Out_6 6 6 Cmd
12 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

The MPIControlConfig{…} structure has been changed to include cmdDacCount and auxDacCount. The
cmdDacCount specifies the number of enabled Cmd Dacs and auxDacCount specifies the number of
enabled Aux Dacs. To configure the number of enabled Dacs, use mpiControlConfigGet/Set(…).

2.12 New S-Curve Jerk Algorithm MPI615
A new move type, MPIMotionTypeS_CURVE_JERK, has been added to support a jerk-specified profile.
This replaces the old jerkPercent algorithm. Two added features that the new S-Curve Jerk algorithm pro-
vide are the ability to call a motion modify at any time during a path move and the freedom to change jerk,
acceleration, and maximum velocity independently. None of these values will be exceeded in the resulting
motion. The new S-Curve Jerk algorithm will be ideal for making final adjustments to a move as it draws
closer to its final target and for making smoother transitions from one motion to the next.

Aux_Dac_Out_6 22 6 Aux

Cmd_Dac_Out_7 7 7 Cmd

Aux_Dac_Out_7 23 7 Aux

Cmd_Dac_Out_8 8 8 Cmd

Aux_Dac_Out_8 24 8 Aux

Cmd_Dac_Out_9 9 9 Cmd

Aux_Dac_Out_9 25 9 Aux

Cmd_Dac_Out_10 10 10 Cmd

Aux_Dac_Out_10 26 10 Aux

Cmd_Dac_Out_11 11 11 Cmd

Aux_Dac_Out_11 27 11 Aux

Cmd_Dac_Out_12 12 12 Cmd

Aux_Dac_Out_12 28 12 Aux

Cmd_Dac_Out_13 13 13 Cmd

Aux_Dac_Out_13 29 13 Aux

Cmd_Dac_Out_14 14 14 Cmd

Aux_Dac_Out_14 30 14 Aux

Cmd_Dac_Out_15 15 15 Cmd

Aux_Dac_Out_15 31 15 Aux

OLD MPI NEW MPI NEW MPI
Standard Release Note, Ver. 20020117.1.6.1.3 13 of 104

Old firmware: Notice that the acceleration is assumed to be zero and
that there is a sudden change in the velocity as a result.

New Firmware: Notice that the acceleration changes less abruptly and
that the velocity profile is much smoother.

Safe parameters for jerk values should range from a minimum of amax* amax / vmax (amax is just
reached when accelerating from 0 to vmax) and a maximum of amax / sample period (amax is reached in

mpiMotionModify

mpiMotionModify
14 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

one sample period). In the new firmware, changes to the jerk will also change the time needed to complete
a motion. For example, a large value of jerk will have a shorter time, but increase the “jerkiness” of the
motion (see fig 1). Conversely, a small value of jerk will have a longer time, but a much smoother motion
(see fig 2).

Fig 1. Acceleration profile with larger value of jerk.

Fig 2. Acceleration profile with smaller value of jerk.

Two new parameters, accelerationJerk and decelerationJerk have been added to the MPITrajectory{…}
structure. When they are non-zero, the acceleration profile uses the specified jerk and acceleration to
ramp an axis(es) to constant velocity and then decelerate to a stop. If accelerationJerk or decelerationJerk
is zero, an illegal parameter error is returned.

For the move type, MPIMotionTypeS_CURVE, the MPI calculates an appropriate jerk value based on the
specified velocity, acceleration, and jerkPercent. The jerk value is computed according to the following for-
mula:

jerk = amax * amax / (vmax * jp * sp (1 - jp * sp))
 jp = jerkPercent

sp = sample period

If jerkPercent is zero, the jerk value is computed so that the maximum acceleration is
reached in one sample period. With the previous S-Curve algorithm, the time for a move would not change
as jerkPercent value was varied. This is also true for this S-Curve algorithm, as long as the move reaches
maximum velocity. In short moves, where maximum velocity is not reached, setting jerkPercent to be small
will result in a quicker move than if you were to set jerkPercent to be large.

WARNING! The same jerkPercent values may cause different profiles than the previous S-Curve algo-
rithm.
For S-Curve algorithm attributes, see section 2.5.

t

deceleration Jerk

acceleration Jerkac
ce

le
ra

tio
n

t

deceleration Jerk

acceleration Jerk

ac
ce

le
ra

tio
n

Standard Release Note, Ver. 20020117.1.6.1.3 15 of 104

2.13 S-Curve Jerk Algorithm Attributes MPI623
The new S_Curve algorithm behaves similarly to the previous algorithm, except for its attributes.
For a general explanation of the new S-Curve algorithm, see section 2.4.

MPIMotionAttrMaskDELAY can now be used with any start motion, but never with motion modify.

MPIMotionAttrMaskAPPEND can be used with any motion, as long as it is not preceded by a motion that
had a final velocity.

MEIMotionAttrMaskNO_REVERSAL returns a MPIMotionMessagePROFILE_ERROR if the given speci-
fications would result in a move with a reversal init, thereby preventing the move from being executed.

MPIMotionTypeTRAPEZOIDAL, MPIMotionTypeS_CURVE, and
MPIMotionTypeS_CURVE_JERK
MPIMotionAttrMaskRELATIVE, when used with MPIMotionTypeTRAPEZOIDAL,
MPIMotionTypeS_CURVE and MPIMotionTypeS_CURVE_JERK means that the final position is relative to
the beginning position of the motion.

MEIMotionAttrMaskFINAL_VEL can be used with MPIMotionTypeTRAPEZOIDAL,
MPIMotionTypeS_CURVE and MPIMotionTypeS_CURVE_JERK, but should be used with caution as it
may not be possible for the controller to compute a trajectory to meet these criteria, which would cause a
MPIMotionMessagePROFILE_ERROR to be returned, and the move to be ignored.

--Multi-Axis Motion--
Neither MPIMotionAttrMaskSYNC_START nor MPIMotionAttrMaskSYNC_END
If neither MPIMotionAttrMaskSYNC_START nor MPIMotionAttrMaskSYNC_END are specified, a single
MPITrajectory{...} may be specified for the resultant motion of multiple axes on one motion supervisor. The
motion of each axis will be synchronized with the others on the motion supervisor. The maximum velocity,
acceleration, deceleration, and jerk values of the first MPITrajectory structure will be used for the global
vector parameters. It will ignore any other values supplied. This cannot be used with
MEIMotionAttrMaskFINAL_VEL.

MPIMotionAttrMaskSYNC_START or MPIMotionAttrMaskSYNC_END but not both
If MPIMotionAttrMaskSYNC_START or MPIMotionAttrMaskSYNC_END (but not both) is specified, each
axis will move as fast as possible and either start together, or stop together. If motion is point-to-point and
more than one axis on the motion supervisor has a final velocity, MPIMotionAttrMaskSYNC_START or
MPIMotionAttrMaskSYNC_END must be used. MPIMotionAttrMaskSYNC_END cannot be used with
motion modify.

Both MPIMotionAttrMaskSYNC_START and MPIMotionAttrMaskSYNC_END
With MPIMotionAttrMaskSYNC_START and MPIMotionAttrMaskSYNC_END, the motion for each axis will
be scaled so that the motion of all axes will end at approximately the same time. The time for this motion is
based on the time for the longest motion, so that the limits are not exceeded. The axes will be scaled to
start and stop together, but the scaling may not be exact. Both MPIMotionAttrMaskSYNC_START and
MPIMotionAttrMaskSYNC_END cannot be used together with MEIMotionAttrMaskFINAL_VEL.
16 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MPIMotionTypeVELOCITY
MPIMotionTypeVELOCITY moves allow a final velocity to be specified without a final point.

MPIMotionAttrMaskSYNC_START and/or MPIMotionAttrMaskSYNC_END
Neither is supported for this motion type. MPIMotionAttrMaskSYNC_END cannot be used with motion
modify.

MEIMotionAttrMaskFINAL_VEL
MEIMotionAttrMaskFINAL_VEL is not supported for this motion type.

MPIMotionAttrMaskRELATIVE
MPIMotionAttrMaskRELATIVE, when used with MPIMotionTypeVELOCITY or
MPIMotionTypeVELOCITY_JERK, means that the final velocity is relative to the velocity at the start of the
motion.

2.14 Configurable Record Buffer Size MPI577
The Data Recorder buffer size can now be dynamically allocated. The MPIControlConfig{...} structure has
a new element, called recordCount. This element allows the application to change the size of the recorder
object's data buffer using the mpiControlConfigGet/Set(...) methods. A larger data buffer size can improve
the performance of MotionScope running on a slow host or running in Client/Server mode over a con-
gested network.

A new method, meiControlExtMemAvail(...), has been added which will return the size of external memory
available for allocation. This value can be added to the current recordCount to expand the record buffer to
the maximum possible size.

2.15 Dynamic Allocation of External Memory Buffers MPI575
In previous versions, the XMP external memory was allocated statically at firmware compile time.

In version 20010119 and later, specific buffers of the XMP external memory is dynamically allocated. The
dynamic allocation feature allows an application to efficiently use the XMP controller's on-board memory
and allows for future expansion. The dynamically allocated buffers currently include the Frame Buffer,
Record Buffer and the SERCOS buffer. Each of these buffers sizes are recalculated during a call to mpi-
ControlConfigSet(...) if any of the associated ControlConfig values change.

The Frame Buffer is used for motion on each axis. The Frame Buffer is directly associated with the num-
ber of EnabledAxes in the MPIControlConfig structure. The Frame Buffer will be allocated to the minimum
size required to support the number of enabled axes. The default number of EnabledAxes is eight (8).

The Record Buffer is used for the on-board data recorder. The Record Buffer is directly associated with
the number of EnabledRecord in the MPIControlConfig structure. The Record Buffer will be allocated to
the minimum size required to support the number of enabled records. The default number of Enable-
dRecords is 3064. Each record is the size of one memory word.

The Sercos Buffer is used for motion on each SERCOS ring network. The Sercos Buffer is directly associ-
ated with the number of EnabledSercos in the MPIControlConfig structure. The Sercos Buffer will be allo-
Standard Release Note, Ver. 20020117.1.6.1.3 17 of 104

cated to the minimum size required to support the number of enabled Sercos rings. The default number of
EnabledSercosRings, for a non-sercos controller is zero (0).

 A new method has been added to discover how much memory is available on your controller. The
method…

MPI_DEF1 long MPI_DEF2
meiControlExtMemAvail(MPIControl control,

 long *size)

…will return the number of memory words available. Since each record size is one memory word, the size
returned from the above function can be used to increase the Record Buffer to maximum size possible.
This greatly improves client/server operation of Motion Scope and any application used for data collection.

WARNING: Due to the nature of dynamic allocation and the clearing of external memory buffers mpiCon-
trolConfigSet(...) should ONLY be called at motion application initialization time and NOT during motion.

2.16 mpiAxisActualVelocity argument changed MPI546
In previous releases, the actual velocity argument in mpiAxisActualVelocity(...) was a float. It has been
changed to a double for consistency with other MPI methods. This was changed in version 20001130.

2.17 mpiAxisPositionError(...) added MPI518
A new method has been added:
mpiAxisPositionError(MPIAxis axis)

 double *error);

This method is used to retrieve the Position Error from a given axis. A valid instance of MPIAxis is passed
to this method along with a pointer to a long variable (long* error). The method does appropriate error
checking on the MPIAxis varriable as well as the long *. Incorrect arguments could return
MPIMessageARG_INVALID or MPIMessageOBJECT_NOT_ENABLED. The method then retreives the
PositionError variable from the MEIXmpAxis structure, converts it from a float to a long, and assigns the
value to the variable pointed to by the long * argument. A return value of 0 indicates that the procedure
executed without error. This new method was added in version 20001103.
18 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

3 Incremental Changes
Since the general release of MPI version 20000913, API changes have been made to add features and to
fix any bugs encountered. Below is an incremental list of changes that have occurred in later revisions. The
incremental changes sections are in reverse order, with the most recent changes first. These changes
have been made in a continual effort to provide a better product by incorporating customer feedback and
rigorous testing methods. Fixed bugs are treated in Section 5 on page 94. Outstanding bugs and limita-
tions are treated in Section 6 on page 101 of this release note.

Changes and additions to existing code are indicated in bold characters; in electronic media, they are indi-
cated in bold blue characters.
Deletions are indicated in bold strikethrough characters; in electronic media, they are indicated in bold
red strikethrough characters.
Extended lines of unchanged code are indicated with a vertical, bold ellipses along the left margin:

Version 20020117.1.6.1.3
In this release, the MPI and firmware versions are:

• A bug (MPI1816) where calls to mpiMotorEventConfigGet(...) and mpiMotorConfigSet(...) from

more than one thread, for the same motor object would cause incorrect "Arg Invalid" errors to be
returned has been fixed. Please see Section 5 of this release note for more information.

Version 20020117.1.6.1.2
In this release, the MPI and firmware versions are:

• A bug (MPI1720) where the startup script did not work when the console cable was disconnected

has been fixed. Please see Section 5 of this release note for more information.

Version 20020117.1.6.1.1
In this release, the MPI and firmware versions are:

• A bug (MPI1507) in the VxWorks compiler caused positions greater than 231 to get truncated has

been fixed. Please see Section 5 of this release note for more information.

Previous Version New Version
Firmware 371A5 371A5
MPI Library 20020117.1.6.1.2 20020117.1.6.13

Previous Version New Version
Firmware 371A5 371A5
MPI Library 20020117.1.6.1.1 20020117.1.6.1.2

Previous Version New Version
Firmware 371A5 371A5
MPI Library 20020117.1.6 20020117.1.6.1.1
Standard Release Note, Ver. 20020117.1.6.1.3 19 of 104

Version 20020117.1.6
In this release, the MPI and firmware versions are:

• Multiple Injection Point Noise Source has been added to the xmp firmware. Please see Section

2.1 of this general release note for more information.
• Changes have been made to streamline the loading of points lists. Please see Section 2.2 of this

general release note for more information.
• (MPI903) Two changes were made to the compensation table calculations to eliminate the imme-

diate toggling of the compensation value on either side of a maximum compensation value in the
compensation table. Please see Section 5 of this release note for more information.

• A bug (MPI895) where sim4calc.exe could calculate incorrect look-up tables has been fixed.
Please see Section 5 of this release note for more information.

• A bug (MPI888) where PVT moves would produce duplicate points at the transition of Element
IDs has been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI887) in multi-point motion (i.e. PVT, PT, spline, etc), which could cause intermitent
Memory Access Violation errors has been fixed. Please see Section 5 of this release note for
more information.

• A bug (MPI885) where changing sample rates could cause unexpected motor faults has been
fixed. Please see Section 5 of this release note for more information.

• A bug (MPI884) where the MPI would misinterpret the axis's state and report a Stopping Error has
been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI881) where the meiFlashMemoryVerify(...) would fail if the entire image was compared
to a list of host files has been fixed. Please see Section 5 of this release note for more informa-
tion.

• A bug (MPI879) where mpiFilterConfigSet(...) would improperly return a
MPIMessagePARAM_INVALID error if the Algorithm was PIV and the PostFilter.Length was non-
zero has been fixed. Please see Section 5 of this release note for more information.

• A typo (MPI843) in the mpiControlInit(...) macro definition, which caused compilation errors has
been fixed. Please see Section 5 of this release note for more information.

Version 20020117.1.3
In this release, the MPI and firmware versions are:

• A bug (MPI829) where an improperly commented block of code caused a shortening of the step
pulse by 1/4 has been fixed. Please see Section 5 of this release note for more information.

• A limitation (MPI836) exists where an overshoot will occur when a motion modify is called under
certain conditions. Please see Section 6.2 of this general release note for more information.

Previous Version New Version
Firmware 364A3 371A5
MPI Library 20020117.1.3 20020117.1.6

Previous Version New Version
Firmware 358A2 364A3
MPI Library 20020117.1 20020117.1.3
20 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Version 20020117.1
In this release, the MPI and firmware versions are:

Version 20020117
In this release, the MPI and firmware versions are:

• MEI’s new On-Line Documentation System is now available. You can access the web site at
http://support.motioneng.com or through the Install Shield CD-ROM. Please see Section 2.3 of
this general release note for more information.

• There is a new default XMP-Series Controller Configuration. The XMP-Series controller’s Flash
memory is now pre-loaded at the factory with base firmware. This firmware allows the MPI to
identify the XMP-Series controller. Please see Section 2.4 of this general release note for more
information.

• A new element, UserVersion has been added to the MPIControlConfig{...} structure. Please see
Section 2.5 of this general release note for more information.

• The DAC level has changed from DAC units to volts. Please see Section 2.6 of this general
release note for more information.

• A bug (MPI767) that caused a Device Driver port call failure has been fixed. Please see Section
5 of this release note for more information.

• A bug (MPI737) that was caused by incorrect handling of the UPDATE frame has been fixed.
Please see Section 5 of this release note for more information.

• A bug (MPI735) where the IN_FINE criteria was only checked in the STOPPED state has been
fixed. Please see Section 5 of this release note for more information.

• A bug (MPI734) which caused mpiMotionStart() calls occuring right after a DONE event to cause
a MOVING error has been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI691) where an erroneous TIMEOUT return value was returned from mpiMotorEvent-
ConfigSet(...) has been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI581) where an incorrect error was returned with mpiMotorStatus(...) and meiMotorSta-
tus(...) has been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI528) where mpiAxisCommandPositionSet(...) would not set the command position if
the axis was in the Stop condition has been fixed. Please see Section 5 of this release note for
more information.

• A bug (23) where mpiControlReset(...) would return too early, causing MPI methods to fail has
been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI632) where there was a FrameBuffer referencing error has been fixed. Please see
Section 5 of this release note for more information.

• A bug (MPI586) where performing a MPIActionStop after a MPIActionReset caused an error has
been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI625) where executing the flash utility with the server option failed has been fixed.
Please see Section 5 of this release note for more information.

• A bug (MPI573) where changes made to mpiMotorIoSet(...) could be erased because of Riptide
latencies has been fixed. Please see Section 5 of this release note for more information.

Previous Version New Version
Firmware 358A2 358A2
MPI Library 20020117 20020117.1

Previous Version New Version
Firmware 347B1 358A2
MPI Library 20011213 20020117
Standard Release Note, Ver. 20020117.1.6.1.3 21 of 104

• A bug (MPI544) where there was no action synchronization between the MPI and firmware caus-
ing the MPI to read old values has been fixed. Please see Section 5 of this release note for more
information.

Version 20011213
In this release, the MPI and firmware versions are:

• A new field has been added to the XMP's firmware to identify and differentiate between intermedi-
ate branch software revisions. Please see Section 2.7 of this general release note for more infor-
mation.

• Path trajectory generation is now supported by PT, PVT, SPLINE, BESSEL, BSPLINE and
BSPLINE2 algorithms. Please see Section 2.8 of this general release note for more information.

• A bug (MPI769) where there was a problem caused by an improper error check in the mpiMotion-
Modify(...) has been fixed. Please see Section 5 of this release note for more information.

• A bug (MPI713) where mpiRecorderRecordGet(...) returned corrupted data has been fixed.
Please see Section 5 of this general release note for more information.

• A bug (MPI 697) where improper interaction occurred between the mpiMotionModify(...) and com-
mand position has now been fixed. Please see Section 5 of this general release note for more
information.

• A bug (MPI 688) where mpiMotorConfigGet() would return an error if both the MPIMotorConfig
and MEIMotorConfig structures were passed has now been fixed. Please see Section 5 of this
general release note for more information.

• A bug (MPI 686) where there was in incorrect motion profile with mpiMotionModify(...) has now
been fixed. Please see Section 5 of this general release note for more information.

• A bug (MPI 683) mpiMotionModify(...) would cause a trajectory dicontinuity with velocity type
moves has now been fixed. Please see Section 5 of this general release note for more informa-
tion.

• A bug (MPI 672) where the filter coefficient value for DRate was being incorrectly saved has now
been fixed. Please see Section 5 of this general release note for more information.

• A bug (MPI 659) where mpiControlReset(...) could lock up the PCI bus has now been fixed.
Please see Section 5 of this general release note for more information.

• A bug (MPI 741) exists where the Win2000 device driver will not allow a host system to go into
“Standby” mode. Please see Section 6 for more information.

• A limitation (MPI 703) exists where the Filter object's DRate (derivative sub-sampling rate) is lim-
ited to a range from 0 to 7. Please see Section 6.2 for more information.

Previous Version New Version
Firmware 325B2 347B1
MPI Library 20010417.1 20011213
22 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Version 20010417.1
In this release, the MPI and firmware versions are:

Changes to MPI/XMP Header Files

• Changes to # defines (“control.h” header file)
#define MPI_VERSION "20020117"

#define MPIControlUserIoSizeINPUT (2)
#define MPIControlUserIoSizeOUTPUT (2)
#define MPIControlUserIoSizeCONFIG (2)

• Changes to MPIAxisMessage data type (“axis.h” header file)
typedef enum {

MPIAxisMessageFIRST = mpiMessageID(MPIModuleIdAXIS, 0),

MPIAxisMessageAXIS_INVALID,
MPIAxisMessageCOMMAND_NOT_SET,

MPIAxisMessageLAST
} MPIAxisMessage;

• Changes to MPICommandMessage data type (“command.h” header file)
typedef enum {

MPICommandMessageFIRST = mpiMessageID(MPIModuleIdCOMMAND, 0),

MPICommandMessageCOMMAND_INVALID,
MPICommandMessageTYPE_INVALID,
MPICommandMessagePARAM_INVALID,

MPICommandMessageLAST
} MPICommandMessage;

• Changes to #defines (“control.h” header file)
#define MPI_VERSION "20010828"

#define MPIControlUserIoSizeINPUT (2)
#define MPIControlUserIoSizeOUTPUT (2)
#define MPIControlUserIoSizeCONFIG (2)

Previous Version New Version
Firmware 310B3 325B2
MPI Library 2000091302 20010417.1
Standard Release Note, Ver. 20020117.1.6.1.3 23 of 104

• Changes to MPIControlConfig data type (“control.h” header file)
typedef struct MPIControlConfig {

long adcCount;
long axisCount;
long captureCount;
long compareCount;
long cmdDacCount;
long auxDacCount;
long filterCount;
long motionCount;
long motorCount;
long recordCount;
long sequenceCount;
long sercosCount;
long userVersion;
long sampleRate;
MPIControlUserIoConfiguserIoConfig;
MPIControlUserIo userIo;

} MPIControlConfig;

• Changes to MPIControlMessage data type (“control.h” header file)
typedef enum {

MPIControlMessageFIRST = mpiMessageID(MPIModuleIdCONTROL, 0),

MPIControlMessageLIBRARY_VERSION, /* Keep as first control message */
MPIControlMessageADDRESS_INVALID,
MPIControlMessageCONTROL_INVALID,
MPIControlMessageTYPE_INVALID,
MPIControlMessageINTERRUPTS_DISABLED,
MPIControlMessageEXTERNAL_MEMORY_OVERFLOW,
MPIControlMessageADC_COUNT_INVALID,
MPIControlMessageAXIS_COUNT_INVALID,
MPIControlMessageCAPTURE_COUNT_INVALID,
MPIControlMessageCOMPARE_COUNT_INVALID,
MPIControlMessageCMDDAC_COUNT_INVALID,
MPIControlMessageAUXDAC_COUNT_INVALID,
MPIControlMessageFILTER_COUNT_INVALID,
MPIControlMessageMOTION_COUNT_INVALID,
MPIControlMessageMOTOR_COUNT_INVALID,
MPIControlMessageLAST

} MPIControlMessage;

• Deletion of mpiControlUserIoConfigGet method (“control.h” header file)
MPI_DECL1 long MPI_DECL2

mpiControlUserIoConfigGet(MPIControl control,
 MPIControlUserIoConfig *userIoConfig);

• Deletion of mpiControlUserIoConfigSet method (“control.h” header file)
MPI_DECL1 long MPI_DECL2

mpiControlUserIoConfigSet(MPIControl control,
 MPIControlUserIoConfig *userIoConfig);

• Deletion of mpiControlUserIoGet method (“control.h” header file)
MPI_DECL1 long MPI_DECL2

mpiControlUserIoGet(MPIControl control,
 MPIControlUserIo *userIo);
24 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Deletion of mpiControlUserIoSet method (“control.h” header file)
MPI_DECL1 long MPI_DECL2

mpiControlUserIoSet(MPIControl control,
 MPIControlUserIo *userIo);

• Changes to MPIMotionMessage data type (“motion.h” header file)
typedef enum {

MPIMotionMessageFIRST = mpiMessageID(MPIModuleIdMOTION, 0),

MPIMotionMessageMOTION_INVALID,
MPIMotionMessageAXIS_NOT_FOUND,
MPIMotionMessageAXIS_COUNT,
MPIMotionMessageTYPE_INVALID,
MPIMotionMessageATTRIBUTE_INVALID,
MPIMotionMessageNOT_READY,
MPIMotionMessageIDLE,
MPIMotionMessageMOVING,
MPIMotionMessageSTOPPING,
MPIMotionMessageSTOPPING_ERROR,
MPIMotionMessageERROR,
MPIMotionMessageAUTO_START,
MPIMotionMessagePROFILE_ERROR,
MPIMotionMessagePATH_ERROR,
MPIMotionMessageFRAMES_LOW,
MPIMotionMessageFRAMES_EMPTY,

MPIMotionMessageLAST
} MPIMotionMessage;

• Changes to MPIPathElementType data type (“path.h” header file)
typedef enum {

MPIPathElementTypeINVALID = -1,

MPIPathElementTypeARC, /* only 2D */
MPIPathElementTypeARC_CENTER, /* only 2D */
MPIPathElementTypeARC_END_POINT, /* both 2D and 3D */
MPIPathElementTypeHELIX, /* not currently supported */
MPIPathElementTypeIO, /* not currently supported */
MPIPathElementTypeLINE, /* both 2D and 3D */

MPIPathElementTypeLAST,
MPIPathElementTypeFIRST= MPIPathElementTypeINVALID + 1,
MPIPathElementTypeMASK= 0xFF,

} MPIPathElementType;

• Changes to MPIPathElementAttrMask data type (“path.h” header file)
typedefenum {

MPIPathElementAttrMaskRELATIVE = mpiPathElementAttrMaskBIT(MPIPathElementAttrRELATIVE),
MPIPathElementAttrMaskID = mpiPathElementAttrMaskBIT(MPIPathElementAttrID),
MPIPathElementAttrMaskVELOCITY = mpiPathElementAttrMaskBIT(MPIPathElementAttrVELOCITY),
MPIPathElementAttrMaskACCEL = mpiPathElementAttrMaskBIT(MPIPathElementAttrACCEL),
MPIPathElementAttrMaskTIMESLICE = mpiPathElementAttrMaskBIT(MPIPathElementAttrTIMESLICE),

MPIPathElementAttrMaskALL = -1 << MPIPathElementAttrFIRST,
} MPIPathElementAttrMask;
Standard Release Note, Ver. 20020117.1.6.1.3 25 of 104

• Changes to MPIPathElementAttributes data type (“path.h” header file)
typedef struct MPIPathElementAttributes {

long id; /* MPIPathAttrID*/
double velocity; /* MPIPathAttrVELOCITY*/
double acceleration; /* MPIPathAttrACCELERATION*/
double timeSlice; /* MPIPathAttrTIMESLICE*/

} MPIPathElementAttributes;

• Changes to MPIPathMessage data type (“path.h” header file)
typedef enum {

MPIPathMessageFIRST = mpiMessageID(MPIModuleIdPATH, 0),

MPIPathMessagePATH_INVALID,
MPIPathMessageILLEGAL_DIMENSION,
MPIPathMessageILLEGAL_ELEMENT,
MPIPathMessageARC_ILLEGAL_DIMENSION,
MPIPathMessageHELIX_ILLEGAL_DIMENSION,
MPIPathMessageILLEGAL_RADIUS,
MPIPathMessagePATH_TOO_LONG,
MPIPathMessageILLEGAL_VELOCITY,
MPIPathMessageILLEGAL_ACCELERATION ,
MPIPathMessageILLEGAL_TIMESLICE ,
MPIPathMessageINVALID_BLENDING,

MPIPathMessageLAST
} MPIPathMessage;

• Change to mpiAxisActualVelocity method (“axis.h” header file)
MPI_DECL1 long MPI_DECL2

mpiAxisActualVelocity(MPIAxis axis,
 double *actual);

• Addition of mpiAxisPositionError method (“axis.h” header file)
MPI_DECL1 long MPI_DECL2

mpiAxisPositionError(MPIAxis axis,
 double *error);

• Change to MPICommandParams data type (“command.h” header file)
typedef union {

struct { /* *'dst' = 'value' */
MPICommandAddress dst;
MPICommandConstant value;
MPIControl control; /* Ignored by Sequence */

} assign;
26 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Change to MPIControlConfig data type (“control.h” header file)
typedef struct MPIControlConfig {

long adcCount;
long axisCount;
long captureCount;
long compareCount;
long cmdDacCount;
long auxDacCount;
long filterCount;
long motionCount;
long motorCount;
long recordCount;
long sequenceCount;
long sercosCount;

long sampleRate;

MPIControlUserIoConfiguserIoConfig;
MPIControlUserIo userIo;

} MPIControlConfig;

• Change to MPIControlMessage data type (“control.h” header file)
typedef enum {

MPIControlMessageFIRST = mpiMessageID(MPIModuleIdCONTROL, 0),
MPIControlMessageLIBRARY_VERSION, /* Keep as first control message */
MPIControlMessageADDRESS_INVALID,
MPIControlMessageCONTROL_INVALID,
MPIControlMessageTYPE_INVALID,
MPIControlMessageINTERRUPTS_DISABLED,
MPIControlMessageEXTERNAL_MEMORY_OVERFLOW,

MPIControlMessageLAST
} MPIControlMessage;

• Change to MPIFilterMessage data type (“filter.h” header file)
typedef enum {

MPIFilterMessageFIRST = mpiMessageID(MPIModuleIdFILTER, 0),

MPIFilterMessageFILTER_INVALID,
MPIFilterMessageINVALID_ALGORITHM,

MPIFilterMessageLAST
} MPIFilterMessage;

• Addition of mpiFilterIntegratorReset method (“filter.h” header file)
MPI_DECL1 long MPI_DECL2

mpiFilterIntegratorReset(MPIFilter filter);
Standard Release Note, Ver. 20020117.1.6.1.3 27 of 104

• Change to MPIMotionType data type (“motion.h” header file)
typedef enum {

MPIMotionTypeINVALID = -1,

MPIMotionTypeJOG,

MPIMotionTypePT,
MPIMotionTypePVT,
MPIMotionTypeSPLINE,
MPIMotionTypeBESSEL,
MPIMotionTypeBSPLINE,
MPIMotionTypeBSPLINE2,

MPIMotionTypeS_CURVE,
MPIMotionTypeTRAPEZOIDAL,
MPIMotionTypeS_CURVE_JERK,

MPIMotionTypeVELOCITY,
MPIMotionTypeVELOCITY_JERK,

#if 0
/* Reserved for future use */
MPIMotionTypeCOORD_ARC,
MPIMotionTypeCOORD_ARC_FINAL_RADIUS,
MPIMotionTypeCOORD_HELICAL,
MPIMotionTypeCOORD_LINEAR,

MPIMotionTypePARABOLIC,

#endif

MPIMotionTypeLAST,
MPIMotionTypeFIRST= MPIMotionTypeINVALID + 1,
MPIMotionTypeMASK= 0xFF,

} MPIMotionType;

• Addition of MPIMotionSCurveJerk data type (“motion.h” header file)
typedef MPIMotionSCurve MPIMotionSCurveJerk;

• Change to MPIMotionParams data type (“motion.h” header file)
typedefstruct MPIMotionParams {

MPIMotionJog jog;

MPIMotionPT pt;
MPIMotionPVT pvt;
MPIMotionSPLINE spline;
MPIMotionBESSEL bessel;
MPIMotionBSPLINE bspline;

MPIMotionSCurve sCurve;
MPIMotionSCurve sCurveJerk;
MPIMotionTrapezoidal trapezoidal;

MPIMotionVelocity velocity;
MPIMotionVelocity velocityJerk;

MPIMotionAttributesattributes;

void *external;
} MPIMotionParams;
28 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Deletion of MPIMotorDac data type (“motor.h” header file)
#defineMPIMotorDacCountMAX(sizeof(MPIObjectMap) * 8)

typedef struct MPIMotorDac {
long count;
long number[MPIMotorDacCountMAX];

} MPIMotorDac;

• Change to MPIMotorConfig data type (“motor.h” header file)
typedef struct MPIMotorConfig {

MPIMotorType type;

/* Event configuration, ordered by MPIEventType */
MPIMotorEventConfigevent[MPIEventTypeMOTOR_LAST];

long ampEnablePolarity; /* FALSE => active lo, else active hi */
long encoderPhase; /* 0 => normal, else reversed */
long captureOnChange; /* 0 => normal, else enabled */

float abortDelay;
float brakeDelay;
float enableDelay;

MPIObjectMap filterMap;
MPIObjectMap adcMap;
MPIMotorDac dac;

MPIMotorIo io;
} MPIMotorConfig;

• Deletion of mpiMotorDacGet method (“motor.h” header file)
MPI_DECL1 long MPI_DECL2

mpiMotorDacGet(MPIMotor motor,
 long *count,
 long *number);

• Deletion of mpiMotorDacMapGet method (“motor.h” header file)
MPI_DECL1 long MPI_DECL2

mpiMotorDacMapGet(MPIMotor motor,
 MPIObjectMap *map);

• Deletion of mpiMotorDacSet method (“motor.h” header file)
MPI_DECL1 long MPI_DECL2

mpiMotorDacSet(MPIMotor motor,
 long count,
 long *number)
Standard Release Note, Ver. 20020117.1.6.1.3 29 of 104

• Change to MPIModuleID data type (“mpidef.h” header file)
typedef enum {

MPIModuleIdINVALID = -1,

MPIModuleIdMESSAGE,
MPIModuleIdADC,
MPIModuleIdAXIS,
MPIModuleIdCAPTURE,
MPIModuleIdCOMMAND,
MPIModuleIdCOMPARE,
MPIModuleIdCONTROL,
MPIModuleIdDAC,
MPIModuleIdEVENT,
MPIModuleIdEVENTMGR,
MPIModuleIdFILTER,
MPIModuleIdIDN,
MPIModuleIdIDNLIST,
MPIModuleIdMOTION,
MPIModuleIdMOTOR,
MPIModuleIdNODE,
MPIModuleIdNOTIFY,
MPIModuleIdPATH,
MPIModuleIdPROGRAM,
MPIModuleIdRECORDER,
MPIModuleIdSEQUENCE,
MPIModuleIdSERCOS,

MPIModuleIdLAST,
MPIModuleIdFIRST = MPIModuleIdINVALID + 1,

MPIModuleIdEXTERNAL = 0x80,

MPIModuleIdMAX = 0xFF
} MPIModuleId;

• Change to MPITrajectory data type (“mpidef.h” header file)
typedef struct MPITrajectory {

double velocity;
double acceleration;
double deceleration;
double jerkPercent;
double accelerationJerk;
double decelerationJerk;

} MPITrajectory;
30 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Addition of MPIPathParams data type (“path.h” header file)
#if 1
/*
 * PathConfig deprecated in favor of PathParams.
 * WARNING: These definitions will eventually be removed.
 */
#defineMPIPathConfig MPIPathParams
#definempiPathConfigGetmpiPathParamsGet
#definempiPathConfigSetmpiPathParamsSet
#endif

typedef struct MPIPathParams {
long dimension;
MPIPathPointstart;
double velocity;
double acceleration;
double deceleration;
MPIMotionTypeinterpolation;
double timeSlice;
double conversion[MPIPathPointDIMENSION_MAX][MPIPathPointDIMENSION_MAX];

} MPIPathParams;

• Deletion of mpiPathConfigGet method (“path.h” header file)
MPI_DECL1 long MPI_DECL2

mpiPathParamsGet(MPIPath path,
 MPIPathParams *params,
 void *external);

• Deletion of mpiPathConfigSet method (“path.h” header file)
MPI_DECL1 long MPI_DECL2

mpiPathConfigSet(MPIPath path,
 MPIPathConfig *config,
 void *external);

• Addition of mpiPathParamsGet method (“path.h” header file)
MPI_DECL1 long MPI_DECL2

mpiPathParamsGet(MPIPath path,
MPIPathParams *params,
void *external);

• Addition of mpiPathParamsSet method (“path.h” header file)
MPI_DECL1 long MPI_DECL2

mpiPathParamsSet(MPIPath path,
MPIPathParams *params,
void *external);

• Change to mpiPathParamsSet method (“path.h” header file)
MPI_DECL1 long MPI_DECL2

mpiPathParamsSet(MPIPath path,
MPIPathParams *params,
void *external);

• Change to MPIRecorderADDRESS_COUNT_MAX constant (“recorder.h” header file)
#defineMPIRecorderADDRESS_COUNT_MAX (128)
Standard Release Note, Ver. 20020117.1.6.1.3 31 of 104

Changes to MEI/XMP Header Files

• Addition of meiPlatformAssertSet method (“platform.h” header file)
MPI_DEF1 void MPI_DEF2

meiPlatformAssertSet(void (MPI_DECL2 *func) (const char *file, long line));

• Changes to MEIRemoteMethod data type (“remote.h” header file)
typedef enum {

MEIRemoteMethodINVALID = -1,

MEIRemoteMethodBOARD_TYPE,
MEIRemoteMethodBOARD_INFO_GET,
MEIRemoteMethodBOARD_INFO_SET,

MEIRemoteMethodFLASH_MEMORY_GET,
MEIRemoteMethodFLASH_MEMORY_SET,

MEIRemoteMethodINTERRUPT_ENABLE,
MEIRemoteMethodINTERRUPT_WAIT,
MEIRemoteMethodINTERRUPT_WAKE,

MEIRemoteMethodMEMORY,

MEIRemoteMethodMEMORY_GET,
MEIRemoteMethodMEMORY_SET,

MEIRemoteMethodPORT_IN_CHAR,
MEIRemoteMethodPORT_OUT_CHAR,

MEIRemoteMethodOBJECT_LOCK_GIVE,
MEIRemoteMethodOBJECT_LOCK_TAKE,

MEIRemoteMethodRESET,

MEIRemoteMethodLAST,
MEIRemoteMethodFIRST = MEIRemoteMethodINVALID + 1

} MEIRemoteMethod;

• Addition of MEIRemoteMethodPortInChar data type (“remote.h” header file)
typedef struct MEIRemoteMethodPortInChar {

unsigned short port;
unsigned char *value;

} MEIRemoteMethodPortInChar;

• Addition of MEIRemoteMethodPortOutChar data type (“remote.h” header file)
typedef struct MEIRemoteMethodPortOutChar {

unsigned short port;
unsigned char value;

} MEIRemoteMethodPortOutChar;

• Changes to MEIRemoteMethodArgs data type (“remote.h” header file)
typedef union {

MEIPlatformBoardType*boardType;
MEIRemoteMethodBoardInfoGetboardInfoGet;
MEIRemoteMethodBoardInfoSetboardInfoSet;
32 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

union {
long enable;
MEIRemoteMethodInterruptWait wait;

} interruptArgs;
MEIRemoteMethodMemory memory;
MEIRemoteMethodMemoryGet memoryGet;
MEIRemoteMethodMemorySet memorySet;
MEIRemoteMethodPortInChar portIn;
MEIRemoteMethodPortOutChar portOut;
MEIRemoteMethodObjectLockGive objectLockGive;
MEIRemoteMethodObjectLockTake objectLockTake;

} MEIRemoteMethodArgs;

• Changes to MEIRemoteHeader data type (“remote.h” header file)
typedef struct MEIRemoteHeader {

unsigned longsize; /* bytes */
unsigned longsequence;

MEIRemoteTypetype;
union {

struct {
MEIRemoteMethod method;
MEIRemoteMethodArgs args;

} query;
struct {

long returnValue;
union {

MEIPlatformBoardType boardType; /* meiPlatformBoardType() */
unsigned char portValue;
long interrupted; /* mpiControlInterruptWait() */
struct {

void *firmware;
void *external;

} memory; /* mpiControlMemory() */
} output;

} reply;
} asa;

unsigned longmemory;/* mpiControlMemory[GS]et(count == 4) */
} MEIRemoteHeader;

• Changes to # defines (“xmp.h” header file)
/* #defines and enums */

#define MEIXmpVERSION 358
 /* version, 200 = 2.00 */

#define MEIXmpOPTION 0
/* FPGA Revision Number */

#define MEIXmpFPGAMBREV 242
#define MEIXmpFPGASIM4REV 211

• Changes to MEIXmpEvent data type (“xmp.h” header file)
typedef enum {

MEIXmpEventIN_COARSE_POSITION = 0,
MEIXmpEventAT_TARGET,
MEIXmpEventAT_VELOCITY,
MEIXmpEventIN_FINE_POSITION,
MEIXmpEventDONE,
MEIXmpEventPPI,
MEIXmpEventPS_FAULT,
MEIXmpEventMS_FAULT,
Standard Release Note, Ver. 20020117.1.6.1.3 33 of 104

MEIXmpEventOUT_OF_FRAMES,
MEIXmpEventEXTERNAL,
MEIXmpEventFRAME,
MEIXmpEventRESET,
MEIXmpEventRESUME,
MEIXmpEventPAUSE,
MEIXmpEventSTOP,
MEIXmpEventESTOP,
MEIXmpEventESTOP_ABORT,
MEIXmpEventABORT,
MEIXmpEventHOST,
MEIXmpEventRESERVED0,
MEIXmpEventRESERVED1,
MEIXmpEventRESERVED2,
MEIXmpEventREC_IDLE,
MEIXmpEventREC_FULL,
MEIXmpEventREC_RUNNING,
MEIXmpEventLIMIT = 31,

} MEIXmpEvent;

• Changes to MEIXmpStatus data type (“xmp.h” header file)
typedef enum {

MEIXmpStatusIN_COARSE_POSITION = (1 << MEIXmpEventIN_COARSE_POSITION), /* 0x00000001 */
MEIXmpStatusAT_TARGET = (1 << MEIXmpEventAT_TARGET), /* 0x00000002 */
MEIXmpStatusAT_VELOCITY = (1 << MEIXmpEventAT_VELOCITY), /* 0x00000004 */
MEIXmpStatusIN_FINE_POSITION = (1 << MEIXmpEventIN_FINE_POSITION), /* 0x00000008 */

MEIXmpStatusSETTLED = MEIXmpStatusIN_FINE_POSITION, /* 0x00000008 */
MEIXmpStatusDONE_MASK = (MEIXmpStatusSETTLED | /* 0x0000000A */

 MEIXmpStatusAT_TARGET),

MEIXmpStatusDONE = (1 << MEIXmpEventDONE), /* 0x00000010 */
MEIXmpStatusIN_FINE_POSITION_LATCHED = MEIXmpStatusDONE, /* 0x00000010 */
MEIXmpStatusPPI = (1 << MEIXmpEventPPI), /* 0x00000020 */
MEIXmpStatusPS_FAULT = (1 << MEIXmpEventPS_FAULT), /* 0x00000040 */
MEIXmpStatusMS_FAULT = (1 << MEIXmpEventMS_FAULT), /* 0x00000080 */
MEIXmpStatusOUT_OF_FRAMES = (1 << MEIXmpEventOUT_OF_FRAMES), /* 0x00000100 */
MEIXmpStatusEXTERNAL = (1 << MEIXmpEventEXTERNAL), /* 0x00000200 */
MEIXmpStatusFRAME = (1 << MEIXmpEventFRAME), /* 0x00000400 */
MEIXmpStatusRESET = (1 << MEIXmpEventRESET), /* 0x00000800 */
MEIXmpStatusRESUME = (1 << MEIXmpEventRESUME), /* 0x00001000 */

MEIXmpStatusPAUSE = (1 << MEIXmpEventPAUSE), /* 0x00002000 */
MEIXmpStatusSTOP = (1 << MEIXmpEventSTOP), /* 0x00004000 */
MEIXmpStatusESTOP = (1 << MEIXmpEventESTOP), /* 0x00008000 */
MEIXmpStatusESTOP_ABORT = (1 << MEIXmpEventESTOP_ABORT), /* 0x00010000 */
MEIXmpStatusABORT = (1 << MEIXmpEventABORT), /* 0x00020000 */

MEIXmpStatusERROR_MASK = (MEIXmpStatusESTOP | /* 0x00038000 */

 MEIXmpStatusESTOP_ABORT |
 MEIXmpStatusABORT),

MEIXmpStatusHOST = (1 << MEIXmpEventHOST), /* 0x00040000 */

MEIXmpStatusRESERVED0 = (1 << MEIXmpEventRESERVED0), /* 0x00080000 */
MEIXmpStatusRESERVED1 = (1 << MEIXmpEventRESERVED1), /* 0x00100000 */
MEIXmpStatusRESERVED2 = (1 << MEIXmpEventRESERVED2), /* 0x00200000 */

MEIXmpStatusRESERVED_MASK = (MEIXmpStatusRESERVED0 | /* 0x00380000 */
 MEIXmpStatusRESERVED1 |
34 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIXmpStatusRESERVED2),

MEIXmpStatusREC_IDLE = (1 << MEIXmpEventREC_IDLE), /* 0x00400000 Recorder Status */
MEIXmpStatusREC_FULL = (1 << MEIXmpEventREC_FULL), /* 0x00800000 */
MEIXmpStatusREC_RUNNING = (1 << MEIXmpEventREC_RUNNING), /* 0x01000000 */
MEIXmpStatusLIMIT = ((long)((unsigned long)1 << MEIXmpEventLIMIT)), /* 0x80000000 */

/* for backward compatibility */
MEIXmpStatusID_USER0 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER1 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER2 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER3 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER4 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER5 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER6 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER7 = MEIXmpStatusLIMIT, /* 0x80000000 */

MEIXmpAxisSTATUS_LATCH = (MEIXmpStatusERROR_MASK | /* 0x803FC010 */
 MEIXmpStatusLIMIT |
 MEIXmpStatusHOST |
 MEIXmpStatusRESERVED_MASK |
 MEIXmpStatusSTOP |
 MEIXmpStatusDONE),

MEIXmpStatusMOTION = (MEIXmpStatusDONE_MASK | /* 0x0020001F */
MEIXmpAxisLATCH_MASK = (MEIXmpAxisSTATE_LATCH |

 MEIXmpAxisSTATUS_LATCH),

MEIXmpStatusMOTION = (MEIXmpStatusDONE_MASK | /* 0x0010001D */

MEIXmpStatusIN_COARSE_POSITION |
 MEIXmpStatusAT_VELOCITY |
 MEIXmpStatusRESERVED2 |
 MEIXmpStatusDONE),

MEIXmpMS_OR_MASK = (MEIXmpStatusERROR_MASK | /* 0x801FEC20 */
 MEIXmpStatusLIMIT |
 MEIXmpStatusHOST |
 MEIXmpStatusRESERVED0 |
 MEIXmpStatusRESERVED1 |
 MEIXmpStatusPAUSE |
 MEIXmpStatusSTOP |
 MEIXmpStatusPPI |
 MEIXmpStatusFRAME |
 MEIXmpStatusRESET),

MEIXmpMS_AND_MASK = MEIXmpStatusMOTION, /* 0x0020001F */

MEIXmpMSAxisMASK = (MEIXmpAxisSTATUS_LATCH |
 MEIXmpStatusPAUSE), /* 0x802FE010 */

} MEIXmpStatus;

• Deletion of # defines (“xmp.h” header file)
/* flags used to modify state machine */
#define MEIXmpStateFlags MEIXmpStatus

#define MEIXmpFlagDONE MEIXmpStatusDONE
#define MEIXmpFlagRESET MEIXmpStatusRESET
#define MEIXmpFlagSTOP MEIXmpStatusSTOP
#define MEIXmpFlagESTOP MEIXmpStatusESTOP
#define MEIXmpFlagESTOP_ABORT MEIXmpStatusESTOP_ABORT
#define MEIXmpFlagABORT MEIXmpStatusABORT
Standard Release Note, Ver. 20020117.1.6.1.3 35 of 104

#defineMEIXmpFlagERROR_MASK MEIXmpStatusERROR_MASK
#define MEIXmpFlagHOST MEIXmpStatusHOST

• Changes to MEIXmpMotionType data type (“xmp.h” header file)
typedef enum {

MEIXmpMotionTypeINVALID = -1,

MEIXmpMotionTypeNONE,
MEIXmpMotionTypeUPDATE,

MEIXmpMotionTypeSTART,
MEIXmpMotionTypeMODIFY_ID,
MEIXmpMotionTypeID,

MEIXmpMotionTypeHOLD,
MEIXmpMotionTypeOUTPUT,
MEIXmpMotionTypeJOG,

MEIXmpMotionTypeVELOCITY,
MEIXmpMotionTypeVELOCITY_JERK,
MEIXmpMotionTypeS_CURVE,
MEIXmpMotionTypeS_CURVE_JERK,

MEIXmpMotionTypePATH_END = MEIXmpMotionTypeS_CURVE,
MEIXmpMotionTypePATH_OPEN,

MEIXmpMotionTypeLAST,
MEIXmpMotionTypeFIRST = MEIXmpMotionTypeINVALID + 1,

} MEIXmpMotionType;

• Addition of MEIXmpFrameType data type (“xmp.h” header file)
typedef enum {

MEIXmpFrameTypeINVALID = -1,

MEIXmpFrameTypeNONE,
MEIXmpFrameTypeUPDATE,

MEIXmpFrameTypeSTART,
MEIXmpFrameTypeMODIFY_ID,
MEIXmpFrameTypeID,

MEIXmpFrameTypeHOLD,
MEIXmpFrameTypeOUTPUT,

MEIXmpFrameTypeVELOCITY,
MEIXmpFrameTypeS_CURVE,

MEIXmpFrameTypeLAST,
MEIXmpFrameTypeFIRST = MEIXmpFrameTypeINVALID + 1,

} MEIXmpFrameType;

• Changes to MEIXmpFrameStatus data type (“xmp.h” header file)
typedef enum {

MEIXmpFrameStatusDIRECTION = 0x00000001,
MEIXmpFrameStatusTARGET = 0x00000002,
MEIXmpFrameStatusVELOCITY_MOVE = 0x00010000, /* assumed S_CURVE move if not set */
36 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIXmpFrameStatusMOVE_IN_PROGRESS = 0x80000000,
} MEIXmpFrameStatus;

• Changes to MEIXmpFrame data type (“xmp.h” header file)
typedef struct MEIXmpFrame {

MEIXmpFrameType Type;
float t;
long Control;
long Position;
float Velocity;
float Accel;
float Jerk;
long Reserved;

} MEIXmpFrame;

• Changes to MEIXmpStartFrame data type (“xmp.h” header file)
typedef struct MEIXmpStartFrame {

MEIXmpFrameType Type;
float t;
long Control;
long Position;
long MoveID;
long ElementID;
float MoveTime;
MEIXmpFrameStatus Status;

} MEIXmpStartFrame;

• Changes to MEIXmpIOFrame data type (“xmp.h” header file)
typedef struct MEIXmpIOFrame {

MEIXmpFrameType Type;
float t;
long Control;
long *Ptr;
long Mask;
long Pattern;

} MEIXmpIOFrame;

• Changes to MEIXmpIDFrame data type (“xmp.h” header file)
typedef struct MEIXmpIDFrame {

MEIXmpFrameType Type;
long Sample;
long Control;
long Position;
long MoveID;
long ElementID;
float MoveTime;
MEIXmpFrameStatus Status;

} MEIXmpIDFrame;

• Changes to MEIXmpAxis data type (“xmp.h” header file)
typedef struct {

MEIXmpLink *Link;
MEIXmpMotionSupervisor *MS;
MEIXmpPosInput APos[MEIXmpAxisPosInputs];
long ActualPosition;
long CommandPosition;
long TargetPosition;
float TargetVelocity;
long Origin;
Standard Release Note, Ver. 20020117.1.6.1.3 37 of 104

long Compensation;
float ActualVelocity;
float CommandVelocity;
float PositionError;
float FinePosTolerance;
long CoarsePosTolerance;
float VelTolerance;
long SettlingTime;
long SettlingCount;
MEIXmpStatus SettlingMask;
MEIXmpStatus Status;
MEIXmpStatus StateFlags;
MEIXmpState State;
long MoveStatus;
MEIXmpMetrics Metric;
long ModifyIndex;
float ModifyTime;
MEIXmpTrajectoryCalculator TC;
MEIXmpAxisGear Gear;
long MoveID;
long ElementID;
MEIXmpHostSignal Signal;

} MEIXmpAxis;

• Addition of can.h header file Not Supported (reserved for future use).
• Addition of xmpcan.h header file Not Supported (reserved for future use).
• Deletion of eeprom.h header file
• Deletion of pci.h header file
• Deletion of pciUtil.h header file

• Changes to MEIMapGroup data type (“map.h” header file)
typedef enum {

MEIMapGroupINVALID = -1,
MEIMapGroupMPI_ADC_CONFIG, /* MEIMapGroupCONFIG_FIRST */
MEIMapGroupMEI_ADC_CONFIG,
MEIMapGroupMPI_AXIS_CONFIG,
MEIMapGroupMEI_AXIS_CONFIG,
MEIMapGroupMEI_CAN_CONFIG,
MEIMapGroupMPI_CAPTURE_CONFIG,
MEIMapGroupMEI_CAPTURE_CONFIG,
MEIMapGroupMPI_CONTROL_CONFIG,
MEIMapGroupMEI_CONTROL_CONFIG,
MEIMapGroupMPI_EVENTMGR_CONFIG,
MEIMapGroupMEI_EVENTMGR_CONFIG,
MEIMapGroupMPI_FILTER_CONFIG,
MEIMapGroupMEI_FILTER_CONFIG,
MEIMapGroupMPI_MOTION_CONFIG,
MEIMapGroupMEI_MOTION_CONFIG,
MEIMapGroupMPI_MOTOR_CONFIG,
MEIMapGroupMEI_MOTOR_CONFIG,
MEIMapGroupMPI_NODE_CONFIG,
MEIMapGroupMEI_NODE_CONFIG,
MEIMapGroupMPI_RECORDER_CONFIG,
MEIMapGroupMEI_RECORDER_CONFIG,
MEIMapGroupMPI_SEQUENCE_CONFIG,
MEIMapGroupMEI_SEQUENCE_CONFIG,
MEIMapGroupMPI_SERCOS_CONFIG,
38 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIMapGroupMEI_SERCOS_CONFIG, /* MEIMapGroupCONFIG_LAST */
MEIMapGroupMEI_XMP_BUFFER_DATA, /* MEIMapGroupXMP_FIRST */
MEIMapGroupMEI_XMP_DATA,
MEIMapGroupMEI_XMP_RIPTIDE_DATA,
MEIMapGroupMEI_XMP_PLD,
MEIMapGroupMEI_XMP_SERCON,
MEIMapGroupMEI_XMP_CAN,
MEIMapGroupMEI_XMP_FRAME_BUFFER,
MEIMapGroupMEI_XMP_RECORD_BUFFER,
MEIMapGroupMEI_XMP_SERCOS_BUFFER,

/* MEIMapGroupXMP_LAST */
MEIMapGroupLAST,
MEIMapGroupFIRST = MEIMapGroupINVALID + 1,

MEIMapGroupCONFIG_FIRST = MEIMapGroupMPI_ADC_CONFIG,
MEIMapGroupCONFIG_LAST= MEIMapGroupMEI_SERCOS_CONFIG + 1,

MEIMapGroupXMP_FIRST= MEIMapGroupMEI_XMP_BUFFER_DATA,
MEIMapGroupXMP_LAST= MEIMapGroupMEI_XMP_SERCON + 1

} MEIMapGroup;

• Changes to MEIModuleId data type (“meidef.h” header file)
typedef enum {

MEIModuleIdPLATFORM = MPIModuleIdEXTERNAL,

MEIModuleIdCAN,
MEIModuleIdCLIENT,
MEIModuleIdELEMENT,
MEIModuleIdFLASH,
MEIModuleIdLIST,
MEIModuleIdMAP,
MEIModuleIdPACKET,
MEIModuleIdSERVER,

MEIModuleIdLAST,
MEIModuleIdFIRST = MPIModuleIdEXTERNAL

} MEIModuleId;

• Changes to MEIPlatformBoardInfo data type (“platform.h” header file)
typedef struct MEIPlatformBoardInfo {

long reserved;
struct {

long revision;
long lower;
long upper;

} manufacturer;
long serialNumber;
long userId;
long boardId;
long socketInfo[5];

} MEIPlatformBoardInfo;
Standard Release Note, Ver. 20020117.1.6.1.3 39 of 104

• Changes to MEIPlatformBoardInfo data type (“platform.h” header file)
typedef struct MEIPlatformBoardInfo {

long reserved;
struct {

long revision;
long lower;
long upper;

} manufacturer;

• Changes to # includes (“stdmei.h” header file)
#include "meidef.h"

#include "can.h"
#include "client.h"
#include "element.h"
#include "firmware.h"
#include "flash.h"
#include "list.h"
#include "map.h"
#include "packet.h"
#include "platform.h"
#include "remote.h"
#include "server.h"
#include "xmpcan.h"

#if defined(__cplusplus)
extern "C" {
#endif

• Changes to MEIControlVersion data type (“stdmei.h” header file)
typedef struct MEIControlVersion {

struct { /* control.c */
char *version; /* MEIControlVersionMPI (YYYYMMDD) */

struct { /* xmp.h */
long version; /* MEIXmpVERSION */
long option; /* MEIXmpOPTION */

} firmware;
} mpi;

struct {
long version; /* hardware version */

struct { /* MEIXmpData.SystemData{} */
long version; /* MEIXmpVERSION_EXTRACT(SoftwareID) */
char revision; /* ('A' - 1) + MEIXmpREVISION_EXTRACT(SoftwareID) */
long subRevision; /* MEIXmpSUB_REV_EXTRACT(Option) */
long developmentId; /* MEIXmpDEVELOPMENT_ID_EXTRACT(Option) */
long option; /* MEIXmpOPTION_EXTRACT(Option) */
long userVersion;
long branchId;

} firmware;

struct {
long FPGA[MEIXmpFPGAsPerBlock];

} motionBlock[MEIXmpMaxMotionBlocks];

struct {
struct {

long version;
40 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

long option;
} busInterface;

} board[MEIXmpMaxBoards];
} xmp;

} MEIControlVersion;

• Changes to MEIControlMessage data type (“stdmei.h” header file)
typedef enum {

MEIControlMessageFIRMWARE_INVALID = MPIControlMessageLAST,
MEIControlMessageFIRMWARE_VERSION_NONE,
MEIControlMessageFIRMWARE_VERSION,
MEIControlMessageSOCKETS,
MEIControlMessageBAD_SOCKET_DATA,
MEIControlMessageNO_SOCKET,

MEIControlMessageLAST
} MEIControlMessage;

• Addition of meiControlMemoryToFile method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiControlMemoryToFile(MPIControl control,
 char *fileName);

• Addition of meiControlSampleRate method (“stdmei.h” header file)
/* Returns the controller's sampleRate */
MPI_DECL1 long MPI_DECL2

 meiControlSampleRate(MPIControl control,
 double *sampleRate);

• Addition of meiMapFileLoadVerify method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMapFileLoadVerify(MEIMap map);

• Deletion of MEIFilterGainStep data type (“stdmei.h” header file)
typedefstruct MEIFilterGainStep {

long stepCommand;
} MEIFilterGainStep;

• Deletion of MEIFilterGainStepCoeff data type (“stdmei.h” header file)
typedefenum {

MEIFilterGainStepCoeffINVALID = -1,

MEIFilterGainStepCoeffSTEP_COMMAND,/* Step Command */

MEIFilterGainStepCoeffLAST,
MEIFilterGainStepCoeffFIRST = MEIFilterGainStepCoeffINVALID + 1

} MEIFilterGainStepCoeff;

• Addition of # defines (“stdmei.h” header file)
/* Filter -- Postfilter */

#define MEIPi (3.141592653589793238462643383279502884)
#defineMEI2Pi (6.283185307179586476925286766559005768)
#define MEIRoot2 (1.4142135623730950488016887242097)
#define MEIe (2.7182818284590452353602874713527)
Standard Release Note, Ver. 20020117.1.6.1.3 41 of 104

• Addition of MEIFilterType data type (“stdmei.h” header file)
typedef enum {

MEIFilterTypeINVALID = -1,

MEIFilterTypeUNITY_GAIN, /* B0 = 1 B1=B2=A1=A2 = 0 (effectively acting as no filter) */
MEIFilterTypeBIQUAD,
MEIFilterTypeSINGLE_ORDER,
MEIFilterTypeLOW_PASS,
MEIFilterTypeHIGH_PASS,
MEIFilterTypeNOTCH,
MEIFilterTypeRESONATOR,
MEIFilterTypeLEAD_LAG,

MEIFilterTypeZERO_GAIN,/* b0=b1=b2=a1=a2 = 0 (this does act as a filter.... zeroing the output) */

MEIFilterTypeIIR,

MEIFilterTypeLAST,
MEIFilterTypeFIRST = MEIFilterTypeINVALID + 1,

} MEIFilterType;

• Addition of # defines (“stdmei.h” header file)
#define MEIMaxBiQuadSections (6)

• Addition of MEIPostfilterSection data type (“stdmei.h” header file)
typedef struct MEIPostfilterSection {

MEIFilterTypetype;

union {

struct {
double breakPoint; /* Hz */

} lowPass;

struct {
double breakPoint; /* Hz */

} highPass;

struct {
double centerFrequency; /* Hz */
double bandwidth; /* Hz */

} notch;

struct {
double centerFrequency; /* Hz */
double bandwidth; /* Hz */
double gain; /* dB */

} resonator;

struct {
double lowFrequencyGain; /* dB */
double highFrequencyGain; /* dB */
double centerFrequency; /* Hz */

} leadLag;

/* Analog coefficients */
struct {
42 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

double a1;
double a2;
double b0;
double b1;
double b2;

} biquad;

struct {
long numberOfCoefficients;
double coeff[MEIXmpMAX_PostFilterSize];

} iir;

} data;

} MEIPostfilterSection;

• Addition of meiFilterPostfilterGet method (“stdmei.h” header file)
/* Get all sections of a postfilter */
MPI_DECL1 long MPI_DECL2

 meiFilterPostfilterGet(MPIFilter filter,
 long *sectionCount,
 MEIPostfilterSection *sections);

• Addition of meiFilterPostfilterSet method (“stdmei.h” header file)
/* Set multiple sections of a postfilter. Sections 0 through (numberOfSections-1) */
MPI_DECL1 long MPI_DECL2

 meiFilterPostfilterSet(MPIFilter filter,
 long sectionCount,
 MEIPostfilterSection *sections);

• Addition of meiFilterPostfilterSectionGet method (“stdmei.h” header file)
/* Get a section of a postfilter */
MPI_DECL1 long MPI_DECL2

 meiFilterPostfilterSectionGet(MPIFilter filter,
long sectionNumber,
MEIPostfilterSection *section);

• Addition of meiFilterPostfilterSectionSet method (“stdmei.h” header file)
/* Set a section of a postfilter */
MPI_DECL1 long MPI_DECL2

 meiFilterPostfilterSectionSet(MPIFilter filter,
long sectionNumber,
MEIPostfilterSection *section);

• Changes to MEIMotionMessage data type (“stdmei.h” header file)
typedef enum {

MEIMotionMessageRESERVED0 = MPIMotionMessageLAST,
MEIMotionMessageRESERVED1,
MEIMotionMessageRESERVED2,
MEIMotionMessageNO_AXES_MAPPED,

MEIMotionMessageLAST
} MEIMotionMessage;
Standard Release Note, Ver. 20020117.1.6.1.3 43 of 104

• Changes to meiMotionFrameBufferLoad method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotionFrameBufferLoad(MPIMotionmotion,
 long initial, /* TRUE/FALSE */
 long lock, /* TRUE/FALSE */
 long frameLowEvent); /* TRUE/FALSE */

• Changes to MEIMotorConfig data type (“stdmei.h” header file)
typedef struct MEIMotorConfig {

MEIMotorEncoder Encoder[MEIXmpMotorEncoders];
MEIXmpIO StatusOutput[MEIXmpMotorStatusOutputs];

MEIMotorTransceiver Transceiver[MEIXmpMotorTransceivers];
MEIMotorTransceiver TransceiverExtended[MEIXmpMotorTransceiversExtended];
long UserOutInvert; /* Opto Polarity */
MEIMotorStepper Stepper;
long EncoderTermination;
long SIM4;
MEIMotorDacConfig Dac;

long pulseEnable; /* 0 => normal, else pulse output */
long pulseWidth; /* 0.1 to 25.5 microseconds */

/* Commutation is read-only from field Theta to end*/
MEIXmpCommutationBlockCommutation;

MEIXmpLimitDataLimit[MEIXmpLimitLAST];

MEIXmpMotorTorqueLimitConfig TorqueLimitConfig;

long AmpDisableWithLSR;/* TRUE => XMP disables amp when LSR is active */

MEIMotorFilterInputFilterInput[MEIXmpMotorFilterInputs];
} MEIMotorConfig;

• Deletion of MEITraceParams data type (“trace.h” header file)
typedef enum {

MEITraceParamsINVALID = -1,

MEITraceParamsMOTION_START = -2,
MEITraceParamsMOTION_MODIFY = -3,
MEITraceParamsEVENT = -4,

MEITraceParamsLAST,
MEITraceParamsFIRST = MEITraceParamsINVALID - 1,

} MEITraceParams;

• Changes to MEITraceMaskGLOBAL data type (“trace.h” header file)
typedef long (*MEITraceFunction)(const char *buffer);
extern MEITraceMask

MEITraceMaskGLOBAL;

• Changes to #defines (“xmp.h” header file)
/* #defines and enums */

#define MEIXmpVERSION 347
 /* version, 200 = 2.00 */

#define MEIXmpOPTION 0
44 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

/* FPGA Revision Number */
#define MEIXmpFPGAMBREV 241
#define MEIXmpFPGASIM4REV 211

#define MEIXmpMAXCompDimensions (2)
#define MEIXmpCompTableSize (512)
#defineMEIXmpMAX_COORD_AXES (16)
#define MEIXmpMAX_MESSAGES (128)
#define MEIXmpMaxLatches (10)
#define MEIXmpMaxComparePositions (10)

#define MEIXmpMaxRecSize (32)
#define MEIXmpMaxCollectionSize (8)
#define MEIXmpPointBufferSize (MEIXmpMAX_MSs * MEIXmpMAX_Axes)
#define MEIXmpDFilterSize (8)
#define MEIXmpMaxGainTables (4)

• Changes to MEIXmpStatus data type (“xmp.h” header file)
typedef enum {

MEIXmpStatusIN_COARSE_POSITION= (1 <<MEIXmpEventIN_COARSE_POSITION),/* 0x00000001 */
MEIXmpStatusAT_TARGET = (1 << MEIXmpEventAT_TARGET), /* 0x00000002 */
MEIXmpStatusAT_VELOCITY = (1 << MEIXmpEventAT_VELOCITY),/* 0x00000004 */
MEIXmpStatusIN_FINE_POSITION = (1 << MEIXmpEventIN_FINE_POSITION),/* 0x00000008 */

MEIXmpStatusSETTLED = MEIXmpStatusIN_FINE_POSITION, /* 0x00000008 */
MEIXmpStatusDONE_MASK = (MEIXmpStatusSETTLED | /* 0x0000000A */

 MEIXmpStatusAT_TARGET),

MEIXmpStatusDONE = (1 << MEIXmpEventDONE), /* 0x00000010 */
MEIXmpStatusIN_FINE_POSITION_LATCHED = MEIXmpStatusDONE, /* 0x00000010 */
MEIXmpStatusPPI = (1 << MEIXmpEventPPI), /* 0x00000020 */
MEIXmpStatusPS_FAULT = (1 << MEIXmpEventPS_FAULT), /* 0x00000040 */
MEIXmpStatusMS_FAULT = (1 << MEIXmpEventMS_FAULT), /* 0x00000080 */
MEIXmpStatusOUT_OF_FRAMES = (1 << MEIXmpEventOUT_OF_FRAMES), /* 0x00000100 */
MEIXmpStatusEXTERNAL = (1 << MEIXmpEventEXTERNAL), /* 0x00000200 */
MEIXmpStatusFRAME = (1 << MEIXmpEventFRAME), /* 0x00000400 */
MEIXmpStatusRESET = (1 << MEIXmpEventRESET), /* 0x00000800 */

MEIXmpStatusPAUSE = (1 << MEIXmpEventPAUSE), /* 0x00001000 */
MEIXmpStatusSTOP = (1 << MEIXmpEventSTOP), /* 0x00002000 */
MEIXmpStatusESTOP = (1 << MEIXmpEventESTOP), /* 0x00004000 */
MEIXmpStatusESTOP_ABORT = (1 << MEIXmpEventESTOP_ABORT), /* 0x00008000 */
MEIXmpStatusABORT = (1 << MEIXmpEventABORT), /* 0x00010000 */

MEIXmpStatusERROR_MASK = (MEIXmpStatusESTOP | /* 0x0001C000 */

MEIXmpStatusESTOP_ABORT |
MEIXmpStatusABORT),

MEIXmpStatusHOST = (1 << MEIXmpEventHOST), /* 0x00020000 */

MEIXmpStatusRESERVED0 = (1 << MEIXmpEventRESERVED0), /* 0x00040000 */
MEIXmpStatusRESERVED1 = (1 << MEIXmpEventRESERVED1), /* 0x00080000 */
MEIXmpStatusRESERVED2 = (1 << MEIXmpEventRESERVED2), /* 0x00100000 */

MEIXmpStatusRESERVED_MASK = (MEIXmpStatusRESERVED0 | /* 0x001C0000 */
MEIXmpStatusRESERVED1 |
MEIXmpStatusRESERVED2),

MEIXmpStatusREC_IDLE = (1 << MEIXmpEventREC_IDLE), /* 0x00200000 Recorder Status */
MEIXmpStatusREC_FULL = (1 << MEIXmpEventREC_FULL), /* 0x00400000 */
MEIXmpStatusREC_RUNNING = (1 << MEIXmpEventREC_RUNNING), /* 0x00800000 */
Standard Release Note, Ver. 20020117.1.6.1.3 45 of 104

MEIXmpStatusLIMIT = ((long)((unsigned long)1 << MEIXmpEventLIMIT)), /* 0x80000000 */

/* for backward compatibility */
MEIXmpStatusID_USER0 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER1 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER2 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER3 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER4 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER5 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER6 = MEIXmpStatusLIMIT, /* 0x80000000 */
MEIXmpStatusID_USER7 = MEIXmpStatusLIMIT, /* 0x80000000 */

MEIXmpAxisSTATE_LATCH = (MEIXmpStatusERROR_MASK | /* 0x800FF013 */
 MEIXmpStatusLIMIT |
 MEIXmpStatusHOST |
 MEIXmpStatusRESERVED_MASK |
 MEIXmpStatusSTOP |
 MEIXmpStatusAT_TARGET |
 MEIXmpStatusIN_COARSE_POSITION |
 MEIXmpStatusDONE),

MEIXmpAxisSTATUS_LATCH = (MEIXmpStatusERROR_MASK | /* 0x800FF013 */
 MEIXmpStatusLIMIT |
 MEIXmpStatusHOST |
 MEIXmpStatusRESERVED_MASK |
 MEIXmpStatusDONE |
 MEIXmpStatusAT_TARGET |
 MEIXmpStatusIN_COARSE_POSITION),

MEIXmpAxisLATCH_MASK = (MEIXmpAxisSTATE_LATCH |
 MEIXmpAxisSTATUS_LATCH),

MEIXmpStatusMOTION = (MEIXmpStatusDONE_MASK | /* 0x0010001D */
 MEIXmpStatusIN_COARSE_POSITION |
 MEIXmpStatusAT_VELOCITY |
 MEIXmpStatusRESERVED2 |
 MEIXmpStatusDONE),

MEIXmpMS_OR_MASK = (MEIXmpStatusERROR_MASK | /* 0x8007FE30 */
 MEIXmpStatusLIMIT |
 MEIXmpStatusHOST |
 MEIXmpStatusRESERVED0 |
 MEIXmpStatusRESERVED1 |
 MEIXmpStatusPAUSE |
 MEIXmpStatusSTOP |
 MEIXmpStatusPPI |
 MEIXmpStatusFRAME |
 MEIXmpStatusRESET),

MEIXmpMS_AND_MASK = MEIXmpStatusMOTION,

MEIXmpMSAxisMASK = (MEIXmpAxisSTATE_LATCH |
 MEIXmpAxisSTATUS_LATCH |
 MEIXmpStatusPAUSE), /* 0x800FF810 */

} MEIXmpStatus;
46 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Addition of # defines (“xmp.h” header file)
/* flags used to modify state machine */
#define MEIXmpStateFlags MEIXmpStatus

#define MEIXmpFlagDONE MEIXmpStatusDONE
#define MEIXmpFlagRESET MEIXmpStatusRESET
#define MEIXmpFlagSTOP MEIXmpStatusSTOP
#define MEIXmpFlagESTOP MEIXmpStatusESTOP
#define MEIXmpFlagESTOP_ABORT MEIXmpStatusESTOP_ABORT
#define MEIXmpFlagABORT MEIXmpStatusABORT
#defineMEIXmpFlagERROR_MASK MEIXmpStatusERROR_MASK
#define MEIXmpFlagHOST MEIXmpStatusHOST

• Changes to MEIXmpMotionType data type (“xmp.h” header file)
typedef enum {

MEIXmpMotionTypeINVALID = -1,

MEIXmpMotionTypeNONE,
MEIXmpMotionTypeUPDATE,

MEIXmpMotionTypeSTART,
MEIXmpMotionTypeMODIFY_ID,
MEIXmpMotionTypeID,

MEIXmpMotionTypeHOLD,
MEIXmpMotionTypeOUTPUT,
MEIXmpMotionTypeJOG,

MEIXmpMotionTypeVELOCITY,
MEIXmpMotionTypeVELOCITY_JERK,
MEIXmpMotionTypeS_CURVE,
MEIXmpMotionTypeS_CURVE_JERK,

MEIXmpMotionTypePATH_END = MEIXmpMotionTypeS_CURVE,
MEIXmpMotionTypePATH_OPEN,

MEIXmpMotionTypeLAST,
MEIXmpMotionTypeFIRST = MEIXmpMotionTypeINVALID + 1,

} MEIXmpMotionType;

• Changes to MEIXmpMotionType data type (“xmp.h” header file)
typedef union {

float f[MEIXmpFilterDataSize];
struct {

/* ErrorSum needs to be in the same position as PIV.PosErrorSum for Reset Integrator function to work */
float ErrorSum;
float ErrorDelta;
float OldError;
float OldVelocity;
/* fft variables need to be in same position in both PID and PIV structures for system analysis tools to work */
float fftCh1;
float fftCh2;
float fftCh3;
float PIDOutput;
float DerivFilter[MEIXmpDFilterSize];

} PID;
struct {

/* PosErrorSum needs to be in the same position as PID.ErrorSum for Reset Integrator function to work */
float PosErrorSum;
float VelErrorSum;
float OldVelocity;
Standard Release Note, Ver. 20020117.1.6.1.3 47 of 104

float OldY;
/* fft variables need to be in same position in both PID and PIV structures for system analysis tools to work */
float fftCh1;
float fftCh2;
float fftCh3;
float PIVOutput;

} PIV;
struct {

long FF;
float OldVelocity;

} SERCOS_DRIVE;
} MEIXmpFilterData;

• Changes to MEIXmpAxis data type (“xmp.h” header file)
typedef struct {

MEIXmpLink *Link;
MEIXmpMotionSupervisor *MS;
MEIXmpPosInput APos[MEIXmpAxisPosInputs];
long ActualPosition;
long CommandPosition;
long TargetPosition;
float TargetVelocity;
long Origin;
long Compensation;
float ActualVelocity;
float CommandVelocity;
float PositionError;
float FinePosTolerance;
long CoarsePosTolerance;
float VelTolerance;
long SettlingTime;
long SettlingCount;
MEIXmpStatus SettlingMask;
MEIXmpStatus Status;
MEIXmpStatus StateFlags;
MEIXmpState State;
long TargetValid;
MEIXmpMetrics Metric;
long ModifyIndex;
float ModifyTime;
MEIXmpTrajectoryCalculator TC;
MEIXmpAxisGear Gear;
long MoveID;
long ElementID;
MEIXmpHostSignal Signal;

} MEIXmpAxis;

• Changes to MEIXmpServiceCmdMotor data type (“xmp.h” header file)
typedef struct {

MEIXmpServiceCmd Config;
MEIXmpServiceCmd StepConfig0;
MEIXmpServiceCmd StepConfig1;
MEIXmpServiceCmd OutputA[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputB[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputC[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputD[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputE[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputF[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputAMP_EN[MEIXmpLookupCmds];

48 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIXmpServiceCmd UserOut[MEIXmpLookupCmds];
MEIXmpServiceCmd Event[MEIXmpLookupCmds];
MEIXmpServiceCmd Compare[MEIXmpLookupCmds];
MEIXmpServiceCmd AbsSource[MEIXmpLookupCmds];
MEIXmpServiceCmd AbsConfig;
MEIXmpServiceCmd SIM4Config; /* in CAPTURE_MODE */
MEIXmpServiceCmd Clear;
MEIXmpServiceCmd PulseWidth;
MEIXmpServiceCmd Clear; /* Must be last in ServiceCmdMotor structure */

} MEIXmpServiceCmdMotor;

• Changes to MEIXmpSoftware data type (“xmp.h” header file)
typedef struct {

long ID;
long BranchID;
long Option;
long UserVersion;

} MEIXmpSoftware;

• Addition of MEIFlashSection data type (“flash.h” header file)
typedef struct MEIFlashSection {

unsigned char *address;
long size;
long sectorIndex;

} MEIFlashSection;

• Change to MEIFlashConfig data type (“flash.h” header file)
typedef struct MEIFlashConfig {

long wordSize;
unsigned char *address;
long size;
unsigned char *addressCode;
long sizeCode;
unsigned char *addressData;
long sizeData;
unsigned char *addressExternal;
long sizeExternal;
long sectorSize;
long sectorSize;
MEIFlashSectionall;
MEIFlashSectioncode;
MEIFlashSectiondata;
MEIFlashSectiondataExt;
MEIFlashSectionFPGA0;
MEIFlashSectionFPGA1;
MEIFlashSectionFPGA2;

} MEIFlashConfig;
Standard Release Note, Ver. 20020117.1.6.1.3 49 of 104

• Addition of MEIFlashFileType data type (“flash.h” header file)
typedef enum {

MEIFlashFileTypeNONE = 0,
MEIFlashFileTypeCode,
MEIFlashFileTypeDataInt,
MEIFlashFileTypeDataExt,
MEIFlashFileTypeCodeAndData,
MEIFlashFileTypeFPGA0,
MEIFlashFileTypeFPGA1,
MEIFlashFileTypeFPGA2,
MEIFlashFileTypeALL /* Loads Code and all FPGAs (for .bin files that include the FPGA images) */

} MEIFlashFileType;

• Change to MEIFlashMessage data type (“flash.h” header file)
typedef enum {

MEIFlashMessageFIRST = mpiMessageID(MEIModuleIdFLASH, 0),

MEIFlashMessageFLASH_INVALID,
MEIFlashMessageFLASH_READ_ERROR,
MEIFlashMessageFLASH_WRITE_ERROR,
MEIFlashMessagePATH,

MEIFlashMessageLAST
} MEIFlashMessage;

• Change to meiFlashMemoryFromFileType method (“flash.h” header file)
MPI_DECL1 long MPI_DECL2

meiFlashMemoryFromFileType(MEIFlash flash,
 const char *fileName,
 MEIFlashFileType fileType);

• Change to meiFlashMemoryToFile method (“flash.h” header file)
PI_DECL1 long MPI_DECL2

meiFlashMemoryToFile(MEIFlash flash,
 const char *fileName,
 MEIFlashFileType fileType);

• Change to MEIMapGroup data type (“map.h” header file)
typedef enum {

MEIMapGroupINVALID = -1,

MEIMapGroupMPI_ADC_CONFIG, /* MEIMapGroupCONFIG_FIRST */
MEIMapGroupMEI_ADC_CONFIG,
MEIMapGroupMPI_AXIS_CONFIG,
MEIMapGroupMEI_AXIS_CONFIG,
MEIMapGroupMPI_CAPTURE_CONFIG,
MEIMapGroupMEI_CAPTURE_CONFIG,
MEIMapGroupMPI_CONTROL_CONFIG,
MEIMapGroupMEI_CONTROL_CONFIG,
MEIMapGroupMPI_DAC_CONFIG,
MEIMapGroupMEI_DAC_CONFIG,
MEIMapGroupMPI_EVENTMGR_CONFIG,
MEIMapGroupMEI_EVENTMGR_CONFIG,
MEIMapGroupMPI_FILTER_CONFIG,
MEIMapGroupMEI_FILTER_CONFIG,
MEIMapGroupMPI_MOTION_CONFIG,
MEIMapGroupMEI_MOTION_CONFIG,
MEIMapGroupMPI_MOTOR_CONFIG,
50 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIMapGroupMEI_MOTOR_CONFIG,
MEIMapGroupMPI_NODE_CONFIG,
MEIMapGroupMEI_NODE_CONFIG,
MEIMapGroupMPI_RECORDER_CONFIG,
MEIMapGroupMEI_RECORDER_CONFIG,
MEIMapGroupMPI_SEQUENCE_CONFIG,
MEIMapGroupMEI_SEQUENCE_CONFIG,
MEIMapGroupMPI_SERCOS_CONFIG,
MEIMapGroupMEI_SERCOS_CONFIG,

/* MEIMapGroupCONFIG_LAST */
MEIMapGroupMEI_XMP_BUFFER_DATA, /* MEIMapGroupXMP_FIRST */
MEIMapGroupMEI_XMP_DATA,
MEIMapGroupMEI_XMP_RIPTIDE_DATA,
MEIMapGroupMEI_XMP_PLD,
MEIMapGroupMEI_XMP_SERCON,

MEIMapGroupMEI_XMP_FRAME_BUFFER,
MEIMapGroupMEI_XMP_RECORD_BUFFER,
MEIMapGroupMEI_XMP_SERCOS_BUFFER,

/* MEIMapGroupXMP_LAST */
MEIMapGroupLAST,
MEIMapGroupFIRST = MEIMapGroupINVALID + 1,

MEIMapGroupCONFIG_FIRST = MEIMapGroupMPI_ADC_CONFIG,
MEIMapGroupCONFIG_LAST = MEIMapGroupMEI_SERCOS_CONFIG + 1,

MEIMapGroupXMP_FIRST = MEIMapGroupMEI_XMP_BUFFER_DATA,
MEIMapGroupXMP_LAST = MEIMapGroupMEI_XMP_SERCON + 1

} MEIMapGroup

• Addition of meiPacketClose method (“packet.h” header file)
MPI_DECL1 long MPI_DECL2

meiPacketClose(MEIPacket packet);

• Addition of MEIPlatformEEPromTableType data type (“platform.h” header file)
#define MEIPlatformSocketInfoNA (0xFFFFFFFF)

typedef enum {/* These are 1 byte wide */
MEIPlatformEEPromTableTypeNONE = 0x0,
MEIPlatformEEPromTableTypeSOCKET = 0x1,
MEIPlatformEEPromTableTypeNA = 0xFF,

} MEIPlatformEEPromTableType;

• Change to MEIPlatformBoardInfo data type (“platform.h” header file)
typedef struct MEIPlatformBoardInfo {

long boardId;
long userId;
long serialNumber;
struct {

long number;
long revision;

} manufacturer;
long reserved[2];
long socketInfo[5];

} MEIPlatformBoardInfo;
Standard Release Note, Ver. 20020117.1.6.1.3 51 of 104

• Change to MEIPlatformBoardType data type (“platform.h” header file)
typedef enum {

MEIPlatformBoardTypeINVALID = -1,

MEIPlatformBoardTypeUNKNOWN,
MEIPlatformBoardTypeHAMMERHEAD,
MEIPlatformBoardTypeXMP,
MEIPlatformBoardTypeXMP_EXPANSION,

MEIPlatformBoardTypeLAST,
MEIPlatformBoardTypeFIRST = MEIPlatformBoardTypeINVALID + 1

} MEIPlatformBoardType;

• Change to meiPlatformBoardInfoGet method (“platform.h” header file)
MPI_DECL1 long MPI_DECL2

meiPlatformBoardInfoGet(MEIPlatform platform,
 MEIPlatformBoardType boardType,
 MEIPlatformBoardInfo *boardInfo);

• Change to meiPlatformBoardInfoSet method (“platform.h” header file)
MPI_DECL1 long MPI_DECL2

meiPlatformBoardInfoSet(MEIPlatform platform,
 MEIPlatformBoardType boardType,
 MEIPlatformBoardInfo *boardInfo);

• Change to MEIRemoteMethod data type (“remote.h” header file)
typedef enum {

MEIRemoteMethodINVALID = -1,

MEIRemoteMethodBOARD_TYPE,
MEIRemoteMethodBOARD_INFO_GET,
MEIRemoteMethodBOARD_INFO_SET,

MEIRemoteMethodFLASH_MEMORY_GET,
MEIRemoteMethodFLASH_MEMORY_SET,

MEIRemoteMethodINTERRUPT_ENABLE,
MEIRemoteMethodINTERRUPT_WAIT,
MEIRemoteMethodINTERRUPT_WAKE,

MEIRemoteMethodMEMORY,

MEIRemoteMethodMEMORY_GET,
MEIRemoteMethodMEMORY_SET,

MEIRemoteMethodOBJECT_LOCK_GIVE,
MEIRemoteMethodOBJECT_LOCK_TAKE,

MEIRemoteMethodRESET,

MEIRemoteMethodLAST,
MEIRemoteMethodFIRST = MEIRemoteMethodINVALID + 1

} MEIRemoteMethod;

• Addition of MEIRemoteMethodBoardInfoGet data type (“remote.h” header file)
typedef struct MEIRemoteMethodBoardInfoGet {

MEIPlatformBoardType boardType;
MEIPlatformBoardInfo *boardInfo;
52 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

} MEIRemoteMethodBoardInfoGet;

• Addition of MEIRemoteMethodBoardInfoSet data type (“remote.h” header file)
typedef MEIRemoteMethodBoardInfoGet MEIRemoteMethodBoardInfoSet;

• Change to MEIRemoteMethodArgs data type (“remote.h” header file)
typedef union {

MEIPlatformBoardType *boardType;
MEIRemoteMethodBoardInfoGet boardInfoGet;
MEIRemoteMethodBoardInfoSet boardInfoSet;
union {

long enable;
MEIRemoteMethodInterruptWait wait;

} interruptArgs;
MEIRemoteMethodMemory memory;
MEIRemoteMethodMemoryGet memoryGet;
MEIRemoteMethodMemorySet memorySet;
MEIRemoteMethodObjectLockGive objectLockGive;
MEIRemoteMethodObjectLockTake objectLockTake;

} MEIRemoteMethodArgs;

• Change to MEIXmpRipTideTxBuff data type (“riptide.h” header file)
typedef struct MEIXmpRipTideTxBuff {

MEIXmpRipTidePosCmd Position[MEIXmpMaxMotionBlocks];
MEIXmpRipTideSample Sample[MEIXmpMaxMotionBlocks];
MEIXmpRipTideIoCmd Io[MEIXmpMaxMotionBlocks];
MEIXmpRipTideRemoraTx Remora[MEIXmpMaxSports];

} MEIXmpRipTideTxBuff;

• Addition of MEIXmpRipTideMotor data type (“riptide.h” header file)
typedef struct MEIXmpRipTideMotor {

long DlyCmd;
long MaxInc;

} MEIXmpRipTideMotor;

• Change to MEIXmpRipTideStep data type (“riptide.h” header file)
typedef struct MEIXmpRipTideStep {

MEIXmpRipTideMotor Motor[MEIXmpMotorsPerBlock];
} MEIXmpRipTideStep;

• Change to MEIXmpRipTidePosCmd data type (“riptide.h” header file)
typedef struct MEIXmpRipTidePosCmd {

long Header;
long DAC[MEIXmpMotorsPerBlock];
MEIXmpRipTideStep Step[MEIXmpStepEnginesPerMotorBlock];
long Trailer;

} MEIXmpRipTidePosCmd;

• Change to MEIXmpRipTideRxBuff data type (“riptide.h” header file)
typedef struct MEIXmpRipTideRxBuff {

MEIXmpRipTideIoStatus Io[MEIXmpMaxMotionBlocks];
MEIXmpRipTideRemoraRx Remora[MEIXmpMaxSports];
MEIXmpRipTidePosStatus Position[MEIXmpMaxMotionBlocks];

} MEIXmpRipTideRxBuff;

• Addition of MEIXmpRipTidePSIOSendWait data type (“riptide.h” header file)
Standard Release Note, Ver. 20020117.1.6.1.3 53 of 104

typedef struct MEIXmpRipTidePSIOSendWait {
long value[MEIXmpMaxMotionBlocksPerSport];

} MEIXmpRipTidePSIOSendWait;

• Addition of MEIXmpRipTideSPSendWait data type (“riptide.h” header file)
typedef struct MEIXmpRipTideSPSendWait {

long value[MEIXmpMaxMotionBlocksPerSport];
} MEIXmpRipTideSPSendWait;

• Change to MEIXMPRipTideData data type (“riptide.h” header file)
typedef struct MEIXmpRipTideData {

MEIXmpRipTideTxBuff TxBuff;
MEIXmpRipTideRxBuff RxBuff;
MEIXmpRipTideTCB TxBuffPositionTcb[MEIXmpMaxSports];
MEIXmpRipTideTCB TxBuffSampleTcb[MEIXmpMaxSports];
MEIXmpRipTideTCB TxBuffIoTcb[MEIXmpMaxSports];
MEIXmpRipTideTCB TxBuffRemoraTcb[MEIXmpMaxSports];
MEIXmpRipTideTCB RxBuffIoTcb[MEIXmpMaxSports];
MEIXmpRipTideTCB RxBuffRemoraTcb[MEIXmpMaxSports];
MEIXmpRipTideTCB RxBuffPositionTcb[MEIXmpMaxSports];

long ErrorFlag;
long FpgaDownloadError;
long NewWait;
long WaitConstant;
long Update20khz;
long BlocksPerSport[MEIXmpMaxSports];
long NewWait[MEIXmpMaxSports];
long Step;
long CurrentWaitConstant[MEIXmpMaxSports];
long AvailableWaitConstant[6];
long AvailableSampleWait[5];
MEIXmpRipTidePSIOSendWait AvailablePosSampleIoSendWait[5];
MEIXmpRipTideSPSendWait AvailableStepPosSendWait[5];

} MEIXmpRipTideData;
54 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Change to MEIXMPMoveData data type (“riptide.h” header file)
typedef struct MEIXmpMoveData {

long x0;
float v0;
long x5;
float v5;
float a[5];
float t[5];
float tmax;
float amax;
float dmax;
float vmax;
float dx;
long n_frames;
long frame_start;
long current_frame;
float new_time;
long origin;
float bl;
MEIXmpAxis*axis;

} MEIXmpMoveData;

• Addition of MEICaptureSIMConfig data type (“stdmei.h” header file)
typedef struct MEICaptureSIMConfig {

long enable;
} MEICaptureSIMConfig;

• Change to MEICaptureConfig data type (“stdmei.h” header file)
typedef struct MEICaptureConfig {

MEICaptureSIMConfig SIM;
} MEICaptureConfig;

• Addition of MEICompareDivideByNMode data type (“stdmei.h” header file)
typedef enum {

MEICompareDivideByNModeINVALID = -1,

MEICompareDivideByNModeRANGE,
MEICompareDivideByNModeFREE,

MEICompareDivideByNModeLAST,
MEICompareDivideByNModeFIRST = MEICompareDivideByNModeINVALID + 1

} MEICompareDivideByNMode;

• Addition of MEICompareDivByNConfig data type (“stdmei.h” header file)
typedef struct MEICompareDivByNConfig {

long enable;
long n;

} MEICompareDivByNConfig;

• Change to MEICompareConfig data type (“stdmei.h” header file)
typedef struct MEICompareConfig {

long continuous;
MEICompareDivByNConfig divByN;

} MEICompareConfig;
Standard Release Note, Ver. 20020117.1.6.1.3 55 of 104

• Addition of MEICompareDivByNParams data type (“stdmei.h” header file)
typedef struct MEICompareDivByNParams {

MPIComparestopCompare;

double startPosition;
double stopPosition;

long arm;
long dir;
long mode;

} MEICompareDivByNParams;

• Addition of meiCompareDivideByNArm method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiCompareDivideByNArm(MPICompare compare,
 MEICompareDivByNParams *params);

• Addition of MEIFlashFiles data type (“stdmei.h” header file)
typedef struct MEIFlashFiles {

char binFile[MEIFlashFileMaxChars];
char FPGAFile[MEIXmpFlashMaxFPGAFiles][MEIFlashFileMaxChars];

} MEIFlashFiles;

• Addition of meiFlashMemoryFromFile method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiFlashMemoryFromFile(MEIFlash flash,
 MEIFlashFiles *filesIn,
 MEIFlashFiles *filesOut);

• Addition of MEIControlHardwareSocketType data type (“stdmei.h” header file)
typedef enum {

MEIControlHardwareSocketTypeNONE = 0x0,
MEIControlHardwareSocketTypeANALOG = 0x1,
MEIControlHardwareSocketTypePULSE = 0x2,
MEIControlHardwareSocketTypeSIM4 = 0x11,
MEIControlHardwareSocketTypeNonMBMask = 0x10,

} MEIControlHardwareSocketType;

• Addition of MEIControlHardwareICType data type (“stdmei.h” header file)
typedef enum {

MEIControlHardwareICType4044XL = 0x0,
MEIControlHardwareICType4044XLA = 0x1,
MEIControlHardwareICType4062XLA = 0x3,
MEIControlHardwareICType4085XLA = 0x5,
MEIControlHardwareICTypeASIC = 0x7,

} MEIControlHardwareICType;

• Addition of MEIControlFPGAOptionID data type (“stdmei.h” header file)
typedef enum {

MEIControlFPGAOptionID_ANALOGXL = 0x1,
MEIControlFPGAOptionID_ANALOGXLA = 0x2,
MEIControlFPGAOptionID_PULSEXLA = 0x3,
MEIControlFPGAOptionID_SIM4XL = 0x9,
MEIControlFPGAOptionID_SIM4XLA = 0xA,

} MEIControlFPGAOptionID;
56 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Addition of MEIControlSocketInfo data type (“stdmei.h” header file)
typedef struct MEIControlSocketInfo {

long sockets;
MEIControlHardwareSocketType socketType[MEIXmpMaxFPGAs];
MEIControlHardwareICType ICType[MEIXmpMaxFPGAs];

} MEIControlSocketInfo

• Addition of MEIControlRipTideConfig data type (“stdmei.h” header file)
typedef struct MEIControlRipTideConfig {

long motionBlocks[MEIXmpMaxSports];
long update20khz;

} MEIControlRipTideConfig;

• Addition of MEIControlFPGA data type (“stdmei.h” header file)
typedef struct MEIControlFPGA {

char FileName[MEIXmpFlashMaxFPGAFiles][MEIFlashFileMaxChars];
long *CodeAddress[MEIXmpMaxFPGAs];

} MEIControlFPGA;

• Change to MEIControlConfig data type (“stdmei.h” header file)
typedef struct MEIControlConfig {

long preFilterCount;
long compensatorCount;
long singleMotionBlock;
MEIXmpPreFilter PreFilter[MEIXmpMAX_PreFilters];
MEIXmpCompensator Compensator[MEIXmpMAX_Compensators];
long CompensationTable[MEIXmpCompTableSize];
MEIXmpUserBuffer UserBuffer;

} MEIControlConfig;

• Change to MEIControlVersion data type (“stdmei.h” header file)
typedef struct MEIControlVersion {

struct { /* control.c */
char *version; /* MEIControlVersionMPI (YYYYMMDD) */

struct { /* xmp.h */
long version; /* MEIXmpVERSION */
long option; /* MEIXmpOPTION */

} firmware;
} mpi;

struct {
long version; /* hardware version */

struct { /* MEIXmpData.SystemData{} */
long version; /* MEIXmpVERSION_EXTRACT(SoftwareID) */
char revision; /* ('A' - 1) + MEIXmpREVISION_EXTRACT(SoftwareID) */
long subRevision; /* MEIXmpSUB_REV_EXTRACT(Option) */
long developmentId; /* MEIXmpDEVELOPMENT_ID_EXTRACT(Option) */
long option; /* MEIXmpOPTION_EXTRACT(Option) */

} firmware;

struct {
long FPGA[MEIXmpFPGAsPerBlock];

} motionBlock[MEIXmpMaxMotionBlocks];

struct {
struct {

long FPGA[MEIXmpFPGAsPerBlock];
} motionBlock[MEIXmpBlocksPerBoard];
Standard Release Note, Ver. 20020117.1.6.1.3 57 of 104

struct {
long version;
long option;

} busInterface;
} board[MEIXmpMaxBoards];

} xmp;
} MEIControlVersion;

• Change to MEIControlMessage data type (“stdmei.h” header file)
typedef enum {

MEIControlMessageFIRMWARE_INVALID = MPIControlMessageLAST,
MEIControlMessageFIRMWARE_VERSION,
MEIControlMessageSOCKETS,
MEIControlMessageBAD_SOCKET_DATA,
MEIControlMessageNO_SOCKET,

MEIControlMessageLAST
} MEIControlMessage;

• Addition of meiControlExtMemAvail method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiControlExtMemAvail(MPIControl control,
 long *size);

• Addition of meiControlSocketInfoGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiControlSocketInfoGet(MPIControl control,
 MEIControlSocketInfo *socketInfo);

• Addition of meiControlSocketInfoSet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiControlSocketInfoSet(MPIControl control,
 MEIControlSocketInfo *socketInfo);

• Addition of meiControlFPGADefaultGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiControlFPGADefaultGet(MPIControl control,
 MEIControlSocketInfo *socketInfo,
 MEIControlFPGA *fpga);

• Addition of meiControlFlashRipTideConfigSet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiControlFlashRipTideConfigSet(MPIControl control,
 MEIFlash flash,
 MEIControlRipTideConfig *config);

• Deletion of MEIDacConfig data type (“stdmei.h” header file)
typedef struct MEIDacConfig {

float Scale;
MEIXmpDACInputType InputType;
MEIXmpGenericValue *Input;

} MEIDacConfig;
58 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Deletion of MEIDacTrace data type (“stdmei.h” header file)
typedef enum {

MEIDacTraceFIRST = MEITraceLAST << 1,

MEIDacTraceLAST = MEIDacTraceFIRST << 15
} MEIDacTrace;

• Change to MEIFilterGainPIV macro (“xmp.h” header file)
typedefstruct MEIFilterGainPIV {

struct {
float proportional; /* Kpp */
float integral; /* Kip */

} gainPosition;
struct {

float proportional; /* Kpv */
} gainVelocity1;
struct {

float position; /* Kpff */
float velocity; /* Kvff */
float acceleration; /* Kaff */
float friction; /* Kfff */

} feedForward;
struct {

float moving; /* MovingIMax */
float rest; /* RestIMax */

} integrationMax;
struct {

float feedback; /* Kdv */
} gainVelocity2;
struct {

float limit; /* OutputLimit */
float limitHigh; /* OutputLimitHigh */
float limitLow; /* OutputLimitLow */
float offset; /* OutputOffset */

} output;
struct {

float integral; /* Kiv */
float integrationMax; /* VintMax */

} gainVelocity3;
struct {

float positionFFT; /* Ka0 */
float filterFFT; /* Ka1 */

} noise;
} MEIFilterGainPIV;

• Change to MEIMotionAttrOutput data type (“stdmei.h” header file)
typedefstruct MEIMotionAttrOutput {

MEIMotionAttrOutputTypetype;
union {

long *output;
long motor;

} as;
long mask;
long pattern;
long pointIndex; /* MEIMotionAttrMaskOUTPUT for path motion - point index for turning on output - used

with point lists */
} MEIMotionAttrOutput;
Standard Release Note, Ver. 20020117.1.6.1.3 59 of 104

• Change to MEIMotionAttributes data type (“stdmei.h” header file)
typedef struct MEIMotionAttributes {

MPIEventMask eventMask; /* MEIMotionAttrMaskEVENT */
double *finalVelocity; /* MEIMotionAttrMaskFINAL_VEL */
MEIMotionAttrHold *hold; /* MEIMotionAttrMaskHOLD */
long *outputCount; /* MEIMotionAttrMaskOUTPUT for path motion - number of outputs - per axis */
MEIMotionAttrOutput *output; /* MEIMotionAttrMaskOUTPUT for path and non path motion - outputs - per axis */

} MEIMotionAttributes;

• Change to MEIMotorMessage data type (“stdmei.h” header file)
typedef enum {

MEIMotorMessageABS_ENCODER_FAULT = MPIMotorMessageLAST,
MEIMotorMessageABS_ENCODER_TIMEOUT,
MEIMotorMessageMOTOR_NOT_ENABLED,

MEIMotorMessageLAST
} MEIMotorMessage;

• Addition of MEIMotorEventOpto data type (“stdmei.h” header file)
/* used to define MPIMotorEventConfig.custom.io */
typedef enum {

MEIMotorEventMaskOPTOA_IN = MEIXmpMotorIOMaskUSER,
MEIMotorEventMaskOPTOA_OUT = MEIXmpMotorIOMaskUSER,
MEIMotorEventMaskOPTOB_IN = MEIXmpMotorIOMaskPOS_LIMIT,
MEIMotorEventMaskOPTOB_OUT = MEIXmpMotorIOMaskAMP_ENABLE,
MEIMotorEventMaskOPTOC_IN = MEIXmpMotorIOMaskNEG_LIMIT,
MEIMotorEventMaskOPTOD_IN = MEIXmpMotorIOMaskHOME,

} MEIMotorEventOpto;

• Addition of MEIMotorEventMotorBlock data type (“stdmei.h” header file)
/* used to define MPIMotorEventConfig.custom.motorNumber */
typedef enum {

MEIMotorEventMotorBlockINVALID = -1,

MEIMotorEventMotorBlock0,
MEIMotorEventMotorBlock1,
MEIMotorEventMotorBlock2,
MEIMotorEventMotorBlock3,

MEIMotorEventMotorBlockFIRST = MEIMotorEventMotorBlock0,
MEIMotorEventMotorBlockLAST = MEIMotorEventMotorBlock3,

} MEIMotorEventMotorBlock;

• Addition of meiMotorDedicatedIOAddrDecode method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorDedicatedIOAddrDecode(MPIMotor motor,
 long addr,
 long* motorNumber);

• Addition of meiMotorDedicatedInAddrGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorDedicatedInAddrGet(MPIMotormotor,
 long motorNumber);
60 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Addition of meiMotorDedicatedOutAddrGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorDedicatedOutAddrGet(MPIMotor motor,
 long motorNumber);

• Change to MEIMotorTransceiverConfig data type (“stdmei.h” header file)
typedef enum {

MEIMotorTransceiverConfigINVALID = -1,

MEIMotorTransceiverConfigINPUT, /* 0 */
MEIMotorTransceiverConfigOUTPUT, /* 1 */
MEIMotorTransceiverConfigSTEP, /* 2 */
MEIMotorTransceiverConfigDIR, /* 3 */
MEIMotorTransceiverConfigCW, /* 4 */
MEIMotorTransceiverConfigCCW, /* 5 */
MEIMotorTransceiverConfigQUAD_A, /* 6 */
MEIMotorTransceiverConfigQUAD_B, /* 7 */
MEIMotorTransceiverConfigCOMPARE, /* 8 */
MEIMotorTransceiverConfigDIAG, /* 9 */
MEIMotorTransceiverConfigNOT_AVAILABLE,

MEIMotorTransceiverConfigLAST,
MEIMotorTransceiverConfigFIRST = MEIMotorTransceiverConfigINVALID + 1,

} MEIMotorTransceiverConfig;

• Addition of MEIMotorResourceNumber data type (“stdmei.h” header file)
typedef enum {

MEIMotorResourceNumberINVALID = -1,
MEIMotorResourceNumber0,
MEIMotorResourceNumber1,
MEIMotorResourceNumber2,
MEIMotorResourceNumber3,
MEIMotorResourceNumber4,
MEIMotorResourceNumber5,
MEIMotorResourceNumber6,
MEIMotorResourceNumber7,
MEIMotorResourceNumber8,
MEIMotorResourceNumber9,
MEIMotorResourceNumber10,
MEIMotorResourceNumber11,
MEIMotorResourceNumber12,
MEIMotorResourceNumber13,
MEIMotorResourceNumber14,
MEIMotorResourceNumber15,
MEIMotorResourceNumber16,
MEIMotorResourceNumber17,
MEIMotorResourceNumber18,
MEIMotorResourceNumber19,
MEIMotorResourceNumber20,
MEIMotorResourceNumber21,
MEIMotorResourceNumber22,
MEIMotorResourceNumber23,
MEIMotorResourceNumber24,
MEIMotorResourceNumber25,
MEIMotorResourceNumber26,
MEIMotorResourceNumber27,
MEIMotorResourceNumber28,
MEIMotorResourceNumber29,
MEIMotorResourceNumber30,
MEIMotorResourceNumber31,
Standard Release Note, Ver. 20020117.1.6.1.3 61 of 104

MEIMotorResourceNumberLAST,
MEIMotorResourceNumberFIRST= MEIMotorResourceNumber0,

}MEIMotorResourceNumber;

• Change to MEIMotorStepper data type (“stdmei.h” header file)
typedef struct MEIMotorStepper {

float PulseWidth;/* output pulse width (sec) */
long Loopback;/* TRUE = count step pulses in encoder reg. */
MEIMotorResourceNumber ResourceNumber;

} MEIMotorStepper;

• Addition of MEIMotorDacChannelConfig data type (“stdmei.h” header file)
typedef struct MEIMotorDacChannelConfig {

float Offset; /* volts */
float Scale;
MEIXmpDACInputType InputType;
MEIXmpGenericValue *Input;

} MEIMotorDacChannelConfig;

• Addition of MEIMotorDacConfig data type (“stdmei.h” header file)
typedef struct MEIMotorDacConfig {

MEIXmpDACPhase Phase;
MEIMotorDacChannelConfig Cmd;
MEIMotorDacChannelConfig Aux;

} MEIMotorDacConfig;

• Change to MEIXmpConfig data type (“stdmei.h” header file)
typedef struct MEIMotorConfig {

MEIMotorEncoder Encoder[MEIXmpMotorEncoders];
MEIXmpIO StatusOutput[MEIXmpMotorStatusOutputs];

MEIMotorTransceiver Transceiver[MEIXmpMotorTransceivers];
MEIMotorTransceiver TransceiverExtended[MEIXmpMotorTransceiversExtended];
long UserOutInvert; /* Opto Polarity */
MEIMotorStepper Stepper;
long EncoderTermination;
long SIM4;
MEIMotorDacConfigDac;

long pulseEnable; /* 0 => normal, else pulse output */
long pulseWidth; /* 1 to 255 microseconds */

/* Commutation is read-only from field Theta to end*/
MEIXmpCommutationBlockCommutation;

MEIXmpLimitDataLimit[MEIXmpLimitLAST];

MEIXmpMotorTorqueLimitConfig TorqueLimitConfig;

long AmpDisableWithLSR;/* TRUE => XMP disables amp when LSR is active */

MEIMotorFilterInputFilterInput[MEIXmpMotorFilterInputs];
} MEIMotorConfig;
62 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Addition of MEIMotorDacChannelStatus data type (“stdmei.h” header file)
typedef struct MEIMotorDacChannelStatus {

float level; /* volts */
} MEIMotorDacChannelStatus;

• Addition of MEIMotorDacChannelStatus data type (“stdmei.h” header file)
typedef struct MEIMotorDacStatus {

MEIMotorDacChannelStatus cmd;
MEIMotorDacChannelStatus aux;

} MEIMotorDacStatus;

• Addition of MEIMotorDacChannelStatus data type (“stdmei.h” header file)
typedef struct MEIMotorStatus {

MEIMotorDacStatus dac;
} MEIMotorStatus;

• Addition of meiMotorRelatedStepMotorGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorRelatedStepMotorGet(MPIMotor motor,
 long *motorNumber);

• Addition of meiMotorCompareListGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorCompareListGet(MPIMotor motor,
 long *compareCount,
 long *compareList);

• Addition of meiMotorDacConfigGet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorDacConfigGet(MPIMotor motor,
 MEIMotorDacConfig *dacConfig,
 MEIFlash flash);

• Addition of meiMotorDacConfigSet method (“stdmei.h” header file)
MPI_DECL1 long MPI_DECL2

meiMotorDacConfigSet(MPIMotor motor,
 MEIMotorDacConfig *dacConfig,
 MEIFlash flash);

• Addition of MEINodeMessage date type (“stdmei.h” header file)
typedef enum {

MEINodeMessageBUFFER_SIZE_ERROR = MPINodeMessageLAST,

MEINodeMessageLAST
} MEINodeMessage;

• Addition of MEISercosMessage data type (“stdmei.h” header file)
typedef enum {

MEISercosMessageBUFFER_SIZE_ERROR = MPISercosMessageLAST,

MEISercosMessageLAST
} MEISercosMessage;

• Change to MEIXmpMotorFPGA data type (“xmp.h” header file)
Standard Release Note, Ver. 20020117.1.6.1.3 63 of 104

typedef enum {
MEIXmpMotorFPGA_XCVR_A_OUT = 0x00000001,
MEIXmpMotorFPGA_XCVR_B_OUT = 0x00000002,
MEIXmpMotorFPGA_XCVR_C_OUT = 0x00000004,
MEIXmpMotorFPGA_XCVR_D_OUT = 0x00000010,
MEIXmpMotorFPGA_XCVR_E_OUT = 0x00000020,
MEIXmpMotorFPGA_XCVR_F_OUT = 0x00000040,
MEIXmpMotorFPGA_SIM4 = 0x02000000,
MEIXmpMotorFPGA_CAPMODE_SIM4 = 0x00000080,
MEIXmpMotorFPGA_ENCODER_TERM = 0x04000000,
MEIXmpMotorFPGA_STEP_LOOPBACK1 = 0x08000000,
MEIXmpMotorFPGA_STEP_LOOPBACK0 = 0x40000000,
MEIXmpMotorFPGA_REVERSE_ENCODER = 0x80000000,
MEIXmpMotorFPGA_QUAD_OUT = 0x00000001,
MEIXmpMotorFPGA_CAPTURE_ON_CHANGE = 0x10000000,
MEIXmpMotorFPGA_COMPARE_CONTINUOUS= 0x00000010,
MEIXmpMotorFPGA_PULSE_ENABLE = 0x00000008,

} MEIXmpMotorFPGA;

• Change to MEIXmpMotorLookup data type (“xmp.h” header file)
typedef enum {

/* Motor Output Configuration */
MEIXmpMotorLookupXCVR_A0_OUT = 0x00000010,
MEIXmpMotorLookupXCVR_A1_OUT = 0x00000020,
MEIXmpMotorLookupXCVR_B0_OUT = 0x00000010,
MEIXmpMotorLookupXCVR_B1_OUT = 0x00000020,
MEIXmpMotorLookupXCVR_C_OUT = 0x00000010,
MEIXmpMotorLookupXCVR_D_OUT = 0x00000010,
MEIXmpMotorLookupXCVR_DEF_OUT = 0x00000010,
MEIXmpMotorLookupXCVR_E_OUT = 0x00000010,
MEIXmpMotorLookupXCVR_F_OUT = 0x00000010,
MEIXmpMotorLookupAMP_EN_OUT = 0x00000010,

 MEIXmpMotorLookupXCVR_CASCADE = 0x00000001,
MEIXmpMotorLookupRESET_IN = 0x00000001,
MEIXmpMotorLookupDIR_IN = 0x00000002,
MEIXmpMotorLookupDIAG_IN = 0x00000002,
MEIXmpMotorLookupSTEP_IN = 0x00000004,
MEIXmpMotorLookupCOMPARE_INC = 0x00000004,
MEIXmpMotorLookupCOMPARE_IN = 0x00000008,
MEIXmpMotorLookupXCVR_IN = 0x00000008,
MEIXmpMotorLookupAMP_EN_IN = 0x00000008,

/* Motor UserOut Configuration */
MEIXmpMotorLookupUSER_OUT = 0x00000010,
MEIXmpMotorLookupUSER_IN = 0x00000008,
/* Motor Event Configuration */
MEIXmpMotorLookupCASCADE_IN = 0x00000008,
MEIXmpMotorLookupCASCADE_OUT = 0x00000010,
MEIXmpMotorLookupEVENT_OUT = 0x00000020,
MEIXmpMotorLookupOVERTRAVEL_POS = 0x00000001,
MEIXmpMotorLookupOVERTRAVEL_NEG = 0x00000002,
MEIXmpMotorLookupHOME = 0x00000004,
MEIXmpMotorLookupINDEX = 0x00000008,
MEIXmpMotorLookupXCVR_A = 0x00000001,
MEIXmpMotorLookupXCVR_B = 0x00000002,
MEIXmpMotorLookupXCVR_C = 0x00000004,
MEIXmpMotorLookupSIM4_INDEX = 0x00000001,
MEIXmpMotorLookupSIM4_ENCB = 0x00000002,
MEIXmpMotorLookupSIM4_ENCA = 0x00000004,
64 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIXmpMotorLookupSIM4_EVENT_IN = 0x00000008,
MEIXmpMotorLookupSIM4_EVENT_OUT = 0x00000080,

} MEIXmpMotorLookup;

• Change to MEIXmpMotionType data type (“xmp.h” header file)
typedef enum {

MEIXmpMotionTypeINVALID = -1,

MEIXmpMotionTypeNONE,

MEIXmpMotionTypeSTART,
MEIXmpMotionTypeMODIFY_ID,
MEIXmpMotionTypeID,

MEIXmpMotionTypeHOLD,
MEIXmpMotionTypeOUTPUT,
MEIXmpMotionTypeJOG,

MEIXmpMotionTypeVELOCITY,
MEIXmpMotionTypeVELOCITY_JERK,
MEIXmpMotionTypeS_CURVE,
MEIXmpMotionTypeS_CURVE_JERK,

MEIXmpMotionTypePATH_END = MEIXmpMotionTypeS_CURVE,
MEIXmpMotionTypePATH_OPEN,

MEIXmpMotionTypeLAST,
MEIXmpMotionTypeFIRST = MEIXmpMotionTypeINVALID + 1,

} MEIXmpMotionType;

• Addition of MEIXmpDACPhase data type (“xmp.h” header file)
typedef enum {

MEIXmpDACPhaseNORMAL = 0,
MEIXmpDACPhaseINVERTED = 1,

} MEIXmpDACPhase;

• Addition of MEIXmpDAC data type (“xmp.h” header file)
typedef struct {

MEIXmpDACPhase Phase;
MEIXmpDACChannel Cmd;
MEIXmpDACChannel Aux;

} MEIXmpDAC;

• Addition of MEIXmpLimitDataModifyState data type (“xmp.h” header file)
typedef enum {

MEIXmpLimitDataModifyStateIDLE = 0x0,
MEIXmpLimitDataModifyStateMODIFY= 0x1,
MEIXmpLimitDataModifyStateDONE = 0x2,

} MEIXmpLimitDataModifyState;
Standard Release Note, Ver. 20020117.1.6.1.3 65 of 104

• Change to MEIXmpLimitData data type (“xmp.h” header file)
typedef struct {

MEIXmpLimitCondition Condition[MEIXmpLimitConditions];
MEIXmpStatus Status;
MEIXmpLogic Logic;
MEIXmpLimitOutput Output;
/* These variables are used internally.
They should not be changed by the Host */
long Count;
long State;
MEIXmpLimitDataModifyState ModifyState;

} MEIXmpLimitData;

• Change to MEIXmpPoint data type (“xmp.h” header file)
typedef union {

struct {
long Position;
float MaxVelocity;
float MaxAccel;
float MaxDecel;
float JerkPercent;
float AccelJerk;
float DecelJerk;
float EndVelocity;
float Delay;
long Control;
long *InPtr;
long InMask;
long InPattern;
float InputTimeout;
long *OutPtr;
long OutMask;
long OutPattern;

} POS;
struct {

long ADCChannel;
float Center;
float Deadband;
float M1;
float M3;

} JOG;
} MEIXmpPoint;

• Deletion of MEIXmpMSAxis data type (“xmp.h” header file)
typedef struct {

long AxisNumber;
MEIXmpPoint Point;

} MEIXmpMSAxis;

• Change to MEIXmpMSLink data type (“xmp.h” header file)
typedef struct {

MEIXmpLink Link;
long DACNumber[MEIXmpCommDACs];
long DACs;
MEIXmpObjectMap ADCMap;
MEIXmpObjectMap DACMap;
long SercosNumber;
long NodeNumber;
66 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Change to MEIXmpMSLink data type (“xmp.h” header file)
typedef struct {

MEIXmpMSAxis Axis[MEIXmpMAX_COORD_AXES];
long Axes;
long AxisNumber[MEIXmpMAX_COORD_AXES];

} MEIXmpMSLink

• Change to MEIXmpMotorLink data type (“xmp.h” header file)
typedef struct {

MEIXmpLink Link;
long DACNumber[MEIXmpCommDACs];
long DACs;
MEIXmpObjectMap ADCMap;
MEIXmpObjectMap DACMap;
long SercosNumber;
long NodeNumber;

} MEIXmpMotorLink;

• Change to MEIXmpMotor data type (“xmp.h” header file)
typedef struct {

MEIXmpSampleConfig SampleConfig;
MEIXmpMotorLink *Link;
MEIXmpMotorType Type;
MEIXmpStatus Status;
MEIXmpMotorIO IO;
float CommandOutput;
long AbortDelay;
long AbortDelayCount;
long EnableDelay;
long EnableDelayCount;
long BrakeDelay;
long BrakeDelayCount;
MEIXmpMotorTorqueLimitConfig TorqueLimitConfig;
long TorqueLimitState;
MEIXmpDAC DAC;
MEIXmpCommutationBlock Commutation;
MEIXmpHostSignal Signal;

} MEIXmpMotor;

• Change to MEIXmpDataRecorder data type (“xmp.h” header file)
typedef struct {

long *RecAddress[MEIXmpMaxRecSize];
long RecSize;
long CollectionSize;
long Period;
long BufferLimit;
long RecsOut;
long RecsIn;
long RecIn;
long Index;
long Sample;
long Count;
long Enable;
MEIXmpStatus Status;
MEIXmpHostSignal Signal;
long *Record;
long BufferSize;

} MEIXmpDataRecorder;
Standard Release Note, Ver. 20020117.1.6.1.3 67 of 104

• Change to MEIXmpLinkBuffer data type (“xmp.h” header file)
typedef struct {

MEIXmpDomainMap DomainMap[MEIXmpMAX_Domains];
MEIXmpObjectMap ADCMap[MEIXmpMAX_ADCs];
MEIXmpObjectMap DACMap[MEIXmpMAX_DACs];
MEIXmpMotorLink MotorLink[MEIXmpMAX_Motors];
MEIXmpLink FilterLink[MEIXmpMAX_Filters];
MEIXmpLink AxisLink[MEIXmpMAX_Axes];
MEIXmpMSLink MSLink[MEIXmpMAX_MSs];

} MEIXmpLinkBuffer;

• Change to MEIXmpServiceCmdMotor data type (“xmp.h” header file)
typedef struct {

MEIXmpServiceCmdConfig;
MEIXmpServiceCmd StepConfig0;
MEIXmpServiceCmd StepConfig1;
MEIXmpServiceCmd OutputA[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputB[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputC[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputD[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputE[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputF[MEIXmpLookupCmds];
MEIXmpServiceCmd OutputAMP_EN[MEIXmpLookupCmds];

MEIXmpServiceCmd UserOut[MEIXmpLookupCmds];
MEIXmpServiceCmd Event[MEIXmpLookupCmds];
MEIXmpServiceCmd Compare[MEIXmpLookupCmds];
MEIXmpServiceCmd Clear;
MEIXmpServiceCmd AbsSource[MEIXmpLookupCmds];
MEIXmpServiceCmd AbsConfig;
MEIXmpServiceCmd SIM4Config;/* in CAPTURE_MODE */
MEIXmpServiceCmd Clear;
MEIXmpServiceCmd PulseWidth;

} MEIXmpServiceCmdMotor;

• Change to MEIXmpServiceCmdAux data type (“xmp.h” header file)
typedef struct {

MEIXmpServiceCmd Config;
MEIXmpServiceCmd Clear;
MEIXmpServiceCmd AbsSource[MEIXmpLookupCmds];
MEIXmpServiceCmd AbsConfig;
MEIXmpServiceCmd Clear;

} MEIXmpServiceCmdAux;

• Change to MEIXmpServiceCmdCompare data type (“xmp.h” header file)
typedef struct {

MEIXmpServiceCmd ValueSelect[MEIXmpLookupCmds];
MEIXmpServiceCmd Previous[MEIXmpLookupCmds];
MEIXmpServiceCmd CompareMode[MEIXmpLookupCmds];
MEIXmpServiceCmd DivByNControl;
MEIXmpServiceCmd DivByNValue; /* sets "N" */

} MEIXmpServiceCmdCompare;

• Change to MEIXmpServiceCmdBuffer data type (“xmp.h” header file)
typedef struct {

MEIXmpServiceCmdBlock Block[MEIXmpMaxMotionBlocks];
} MEIXmpServiceCmdBuffer;
68 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

• Change to MEIXmpBufferData data type (“xmp.h” header file)
typedef struct {

long ExtMemSize;
MEIXmpCommandBuffer CommandBuffer;
float CommutationTable[MEIXmpCOMM_TABLE_SIZE];
long CompensationTable[MEIXmpCompTableSize];
MEIXmpDomain Domain[MEIXmpMAX_Domains];
MEIXmpLinkBuffer LinkBuffer;
MEIXmpPoint PointBuffer[MEIXmpMAX_Axes];
MEIXmpMessage HostMessageBuffer[MEIXmpMAX_MESSAGES];
MEIXmpUserBuffer UserBuffer;
MEIXmpServiceCmdBuffer ServiceCmdBuffer;
MEIXmpSercos Sercos[MEIXmpSercosCountMAX];
MEIXmpCaptureCompare Capture[MEIXmpMaxCaptures];
MEIXmpCaptureCompare Compare[MEIXmpMaxCompares];
MEIXmpMotorLimit MotorLimit[MEIXmpMAX_Motors];
long LimitTable[MEIXmpLimitLookupSize];
MEIXmpPreFilter PreFilter[MEIXmpMAX_PreFilters];
MEIXmpCustomBuffer CustomBuffer;
/* Note: Frame Buffer will not be initialized or stored in flash */
MEIXmpFrame FrameBuffer[MEIXmpMAX_Axes * MEIXmpFrameBufferSize];
long RecordBuffer[MEIXmpRecordBufferSize];

} MEIXmpBufferData;

• Change to MEIXmpHWVersion data type (“xmp.h” header file)
typedef struct {

struct {
long Version;
long Option;

} BusIF;
long Block[MEIXmpBlocksPerBoard];

} MEIXmpHWVersion;

• Addition of MEIXmpFrameBuffer data type (“xmp.h” header file)
typedef struct {

MEIXmpFrame *Ptr;
long Size; /* number of words */

} MEIXmpFrameBuffer;

• Addition of MEIXmpDataRecord data type (“xmp.h” header file)
typedef struct {

long Record;
} MEIXmpDataRecord; /* This structure needed by map module */

• Addition of MEIXmpSercosBuffer data type (“xmp.h” header file)
typedef struct {

MEIXmpSercos *Ptr;
long Size; /* number of words */

} MEIXmpSercosBuffer;
Standard Release Note, Ver. 20020117.1.6.1.3 69 of 104

• Addition of MEIXmpExtAlloc data type (“xmp.h” header file)
typedef struct { /* Structures in allocated external memory */

MEIXmpFrameBuffer FrameBuffer; /* This should allways be first in the structure so that reallocation will
not require the MPI to rewrite all of the Axis' Frame pointers */

MEIXmpDataRecordBuffer DataRecordBuffer;
MEIXmpSercosBuffer SercosBuffer; /* This has a size of 0 if no Sercos hardware exists */

} MEIXmpExtAlloc;

• Addition of MEIXmpSoftware data type (“xmp.h” header file)
typedef struct {

long ID;
long Option;
long UserVersion;

} MEIXmpSoftware;

• Change to MEIXmpSystemData data type (“xmp.h” header file)
typedef struct {

long Signature;
long Disable;
MEIXmpSoftware Software;
long SoftwareID;
long Option;
long EnabledMotors;
long EnabledFilters;
long EnabledAxes;
long EnabledMSs;
long EnabledPSs;
long EnabledPreFilters;
long EnabledCompensators;
long EnabledCmdDACs;
long EnabledAuxDACs;
long EnabledADCs;
long EnabledSercosRings;
long SingleMotionBlock;
long EnabledRecords;
long SamplePeriod;
long SampleCounter;
long CountDelta;
long BackgroundCycle;
long MaxForegroundTime;
long MaxBackgroundTime;
long Gate;
long HostGate;
MEIXmpHWVersion HWVersion[MEIXmpMaxBoards];
long MotionBlockVersion[MEIXmpMaxMotionBlocks];
long *FPGACode[MEIXmpMaxFPGAs];
MEIXmpExtAlloc ExtAlloc;

} MEIXmpSystemData;

• Change to MEIXmpData data type (“xmp.h” header file)
typedef struct {

MEIXmpSystemData SystemData;
MEIXmpMotor Motor[MEIXmpMAX_Motors];
MEIXmpFilter Filter[MEIXmpMAX_Filters];
MEIXmpAxis Axis[MEIXmpMAX_Axes];
MEIXmpMotionSupervisor MS[MEIXmpMAX_MSs];
MEIXmpProgramSequencer PS[MEIXmpMAX_PSs];
MEIXmpHostMessage HostMessage;
MEIXmpDataRecorder Recorder;
70 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

MEIXmpCompensator Compensator[MEIXmpMAX_Compensators];
MEIXmpDAC DAC[MEIXmpMAX_DACs];
MEIXmpADC ADC[MEIXmpMAX_ADCs + 1];
MEIXmpBlock Block[MEIXmpMaxMotionBlocks];
MEIXmpInternalData Internal;

} MEIXmpData;
Standard Release Note, Ver. 20020117.1.6.1.3 71 of 104

4 Motion Console and Motion Scope
4.1 Utilties: Closed Issues

4.1.1 XMP Motion Console

Modified in Version:03.37.19

Modification Type: New Feature
Number Name

839 [Dup. of 799] NULL firmware message
The following error messages will now be displayed when mpiControlInit fails with the corresponding error code:

MEIControlMessageFIRMWARE_VERSION_NONE: No firmware is on the controller.
MEIControlMessageFIRMWARE_VERSION: The version of firmware on the controller is invalid.
MEIControlMessageFIRMWARE_INVALID: The firmware on the controller is invalid.

Modification Type: MI (Minor Improvement)
Number Name

837 [Dup. of 810] MoCon doesn't display the state of the index input under the motor summary's bottom i/o tab
The Index motor input bit (MEIXmpMotorIOBitINDEX) is now displayed in the Motor I/O Status tab.

Modification Type: Bug (PR)
Number Name

834 Motion Console crashes when browse button in download firmware window is pressed
If the MEI_INSTALL_DIR environment variable was not set, then MoCon would crash when browsing for a firmware file
 to upload or download.

835 [Dup. of 807] Panic action does not stick
The panic action setting was not being saved when minimizing and restoring MoCon. This has been fixed.

836 [Dup. of 774] Two ampersands (&&) in a tooltip are displayed as an underline
Two ampersands that should be displayed in a tooltip were instead being displayed as an underline.

841 [Dup. of 750] Sine Comm error message limits abiltiy to fix problem
There is no longer a minimum number of Aux DACs required to switch to no commuation mode.

Modified in Version:03.37.18

Modification Type: DR (Discrepancy Report)
Number Name

822 [Dup. of 821] MoCon dies when MEI_INSTALL_DIR does not exist
MotionConsole uses the environment variable MEI_INSTALL_DIR to determine where the default .INI file is to
be located. If MEI_INSTALL_DIR was set to a directory that didn't exist, Motion Console would crash. It now
displays an appropriate error message and exits.

823 [Dup. of 816] Initial directory for firmware download/upload should be MEI_DIR
When the user downloads or uploads firmware for the first time, the directory where the browser is set is
obtained from the environment variable MEI_DIR. There is a bug that erroneously sets this directory to C:\,MEI. Since thi
directory normally does not exist, the initial directory for the browser is set to whatever the default .
72 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Modified in Version:03.37.17

Modification Type:MI (Minor Improvement)

Number Name

788 Merge Japanese Translations Intro Production Release Version
Merge the current Japanese translations into the Production Release version.

Modified in Version: 03.37.16

Modification Type:MI (Minor Improvement)

Number Name

780 Display MPI Library Assertion Violations
MPI library assertion violations are now displayed in a dialog box before the application exits. The user is given the choice of
ignoring the error.

Modified in Version: 03.37.15

Modification Type:MI (Minor Improvement)

Number Name

551 Default firmware download directory should be ...\xmp\bin
When one tries to load new firmware, the default directory should be ...\xmp\bin. Or, it should remember the last
directory that was used.

Modified in Version: 03.37.14

Modification Type:MI (Minor Improvement)

Number Name

737 Make grid cell tooltips multi-line
The implementation of tooltips has been modified to support multiple lines of text. If the tooltip exceeds the width of the screen,
 or if there are newline characters in the text, then the tooltip will be displayed with multiple lines.

Modification Type:DR (Discrepancy Report)

Number Name

743 DAC units wrong
The DAC Level units in the motor summary are in Volts. The tool tips have been modified to reflect this change.

Modified in Version:03.37.13

Modification Type:DR (Discrepancy Report)

Number Name

727 Motion state icon changes when attribute is edited
While an Axis is moving towards position 2, the right arrow state icon is displayed. Prior to this fix, if the user edited an Axis
or Motion Supervisor attribute, the state icon would erroneously switch to the left arrow. The motion itself did not change, just
 the icon.

Modified in Version:03.37.12

Modification Type:DR (Discrepancy Report)

Number Name
Standard Release Note, Ver. 20020117.1.6.1.3 73 of 104

715 Downloading firmware with fewer MS objects causes library errors
When firmware was downloaded onto a controller that resulted in there being fewer Motion Supervisors, a library error was
displayed for every MS object that was no longer enabled.

716 Modifying controller attribute while motor is in motion causes strange behavior
If a motor was in motion and the user modified a controller attribute and then clicked on another grid, then an error message
was displayed. After the message was displayed, Motion Console behaved as if the left mouse button was being held down.

717 Object status always updated, even when not being displayed
In general, an object status should not be updated unless it is being displayed. There was a bug that caused the object status
 to always be updated after the object was initially displayed.

720 Suspect firmware files dialog box displayed at inappropriate times
The "Suspect Firmware Files" dialog box should only be displayed when meiFlashMemoryFromFile() fails with an error code
of MPIMessageFILE_OPEN_ERROR. It was being displayed for any error code and sometimes after downloading a good
firmware file.

Modified in Version: 03.37.11

Modification Type:DR (Discrepancy Report)

Number Name

702 Object Explorer context menus are out of sync
When the user right-clicked on any folder icon in the Object Explorer, an inappropriate context menu for that item was
displayed.

706 Controller Summary column headers should display the controller name
The column headers in the Controller Summary should display controller names instead of the controller index. The name is
assigned to the controller when it is created by the user. The controller index is meaningless to the user and can actually
conflict with the name.

707 Summary profiles not saved before switching profile
The Summary window position and object list configuration were not being saved to the profile before switching to a different
 profile.

708 Ctrl + S opens Save dialog box, but nothing is saved
Typing Ctrl + S opens a Save dialog box. The shortcut should not be defined at all.

Modified in Version: 03.37.10

Modification Type:NF (New Feature)

Number Name

690 Add a command line option to disable the splash screen
The option "-s X" has been added to the command line to allow the user to disable the splash screen. If the value of X is 0,
then the splash screen will be disabled.

Modification Type:MI (Minor Improvement)

Number Name

692 Object Configuration Refreshed When Modified Externally
Motion Console will now refresh the configuration of an object immediately prior to the user editing an attribute of that object.
This makes it possible for the correct configuration to be set when the configuration of an object has been modified outside of
 Motion Console.

Modification Type:CR (Change Request)

Number Name

687 No CellTip displayed for View I/O button when controller is uninitialized
74 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

The View I/O button on the Config tab page of the Controller Summary did not display a CellTip error when the controller was
unable to initialize.

Modified in Version: 03.37.08

Modification Type: DR (Discrepancy Report)

Number Name

 585 Order of sub-objects can be changed when order is irrelevant
When the Object List Configuration Dialog Box is used to modify the sub-object list of an object, the order of the sub-objects
should not be modifiable if the order is irrelevant. This should be done by hiding the "Up" and "Down" buttons. This was not
being done.

597 Invalid object count displayed in Controller Summary window
If an object count was changed by entering a new number and hitting <Enter> on the Config page of the Controller Summary
window, and then the controller was reset, an invalid object count was being displayed when entering edit mode on the
object count cell.

658 Incorrect error message
In the Motor Summary window, under the SinComm tab, attempting to modify any of the fields used to give the error
message: "There is an insufficient number of DACs mapped to this motor for commutation. Make sure that there are enough
DACs enabled in the controller and then map two DACs to this motor object."

Since DACs can no longer be mapped to motors, the error message has been changed to "There is an insufficient number of
enabled DACs or auxiliary DACs to enable commutation for this motor. The number of DACs and auxiliary DACs enabled in
the controller must be at least %d", where %d is the motor number + 1.

683 Transceiver Status Reporting
On the I/O status page of the Motor Summary, levels for transceivers D - F and and User I/O were mixed up. Transceiver D
was displaying User I/O, transceiver E was displaying transceiver D, transceiver F was displaying transceiver E, and User I/O
was displaying transceiver F.

Modified in Version: 03.37.07

Modification Type: CR (Change Request)

 Number Name

652 Add support for MPI version string

The text in the "About Motion Console" dialog has been modified to correctly display the MPI version. The version of the
MPI that Motion Console was compiled with has also been added.

653 Ignore MPIControlMessageLIBRARY_VERSION error from mpiControlInit()
While the controller is being initialized, if an MPIControlMessageLIBRARY_VERSION error occurs, then the error will be
displayed, but otherwise it is ignored.

Modified in Version: 03.37.06

Modification Type: NF (New Feature)

Number Name

623 Refresh hotkey
The F5 key now behaves as a refresh key, as in other applications. When F5 is clicked, the display will be refreshed to
reflect any changes that may have been made to the controller configuration outside of Motion Console. The behavior is
exactly the same as selecting all controllers in the Object Explorer or the Controller Summary and then clicking the Refresh
Display button in that window. A display refresh can also be triggered by clicking on a new icon on the main toolbar (next
to the Panic Button), or by selecting the "Refresh Display" menu item under the View menu.
Standard Release Note, Ver. 20020117.1.6.1.3 75 of 104

 Modification Type: MI (Minor Improvement)

Number Name

631 Add shortcuts to menu items
Many of the menu items in Motion Console have keyboard shortcuts. Unfortunately, the user must use a mouse to find out
what the shortcut is. The shortcut should be added to the menu item.

Modification Type: DR (Discrepancy Report)

Number Name

639 Flashing Pulse Controller with MoCon doesn't work
When downloading firmware, Motion Console was not configuring RipTide like the flash utility.

650 MoCon dies when controller is deleted while being displayed in Controller Summary
MoCon was dying when a controller was removed while being displayed in the Controller Summary.

Modified in Version: 03.37.05

Modification Type: NF (New Feature)

Number Name

591 Add Splash Screen
An MEI splash screen is now displayed as Motion Console is loading.

649 Add support for new motion types: S-Curve Jerk, Velocity Jerk
To the Axis Summary, add the following rows to the Motion tab: AccelJerk, DecelJerk. To the Motion Type combo on the MS
Summary, add the following new types: S-Curve Jerk, Velocity Jerk.

Modification Type: DR (Discrepancy Report)

Number Name

632 Controller information not removed from .INI file after controller is removed
After a controller has been removed, all data for that controller should be removed from the .INI file. Data for axes and
motion supervisors was not being removed.

636 Incorrect error message in MoCon
When in closed loop sine comm mode, an attempt was made to change the DAC phasing, it returned an error. The mes-
sage, "DAC phasing cannot be changed in open loop mode" was being displayed. The correct message should have been
"... closed loop mode".

Modified in Version: 03.37.04

Modification Type: CR (Change Request)

Number Name

638 New dialog box for downloading firmware
A new dialog box for downloading firmware has been added. With the new dialog box, FPGA files can be specified as well
as a .BIN file.

Modified in Version: 03.37.03

Modification Type: NF (New Feature)

Number Name

594 Add Motor Stepper Configuration Attributes for XMP Pulse
76 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

The following motor configuration attribute has been added to the Motor General Configuration tab page:
Stepper Resource Number: MEIMotorConfig.Stepper.ResourceNumber

595 Add new Transceiver Configuration Options for XMP Pulse
The transceiver configuration options for transceivers A and B have been expanded to reflect the new definition of the
MEIMotorTransceiverConfig enumeration.

Modification Type: MI (Minor Improvement)

Number Name

629 Summary Tabs To Use System Menu Font
The font used for the Summary window tabs has been changed from "Arial" to being based on the system menu font. The
height of the tab beam is adjusted according to the height of the font. The system menu font is modified in the Display
Properties system dialog box, under the "Appearance" tab.

Modification Type: DR (Discrepancy Report)

Number Name

622 Japanese Font Size On All Tabs Displayed Bigger Than Expected
Japanese fonts on the all tabs of the all summary windows were being displayed taller than the tab beam. The minor
improvement implemented for issue #629 fixed this problem.

625 ToolTips for Main Frame ToolBar Look Strange
The ToolTips for the buttons on the Main Frame ToolBar were being displayed with a strange character in the middle of
them.

627 Clicking on another cell causes selection to change before value is set in multiple cell
When several cells are selected, and the user modifies the value of the current cell, then the value should be set in all the
cells in the selection. This wasn't happening when the user clicked on a cell that was not in the set of selected cells.

Modification Type: CR (Change Request)

Number Name

626 Remove DAC object entirely
The DAC object has been removed from the MPI, so it has also been removed from Motion Console. The functionality that
was formerly implemented in the DAC Summary window has been moved to the Motor Summary window. The DAC
configuration has been moved to the "Config" tab page and the DAC status has been moved to the "Status" tab page.

Modified in Version: 03.37.02

Modification Type: MI (Minor Improvement)

Number Name

607 Change Summary window style to include maximize, minimize, and restore buttons
The maximize, minimize, and restore buttons have been reinstated to the top right corner.

613 Move tab scroll buttons to the right of the tabs
The tab scroll buttons have been moved to the right of the tabs. Also, the tab scroll buttons will now automatically hide
when the window is large enough to display all the tabs.

614 Add Solid Border to Top of Status Grids
A solid border was added to the top of the status grids, just like in the configuration grids.

615 Improved Tab Appearance
The appearance of the tabs on the Summary windows has been made to look more tab-like.
Standard Release Note, Ver. 20020117.1.6.1.3 77 of 104

Modification Type: DR (Discrepancy Report)

Number Name

288 Grid ToolTip covers up CellTip for last row
The CellTip for the row header in the last row was obscured by the ToolTip for the grid. The ToolTip for the grid is now
displayed when the user hovers over the tab for the grid. Therefore, the two ToolTips are not displayed at the same time.

562 Columns disappear after resetting all columns to default width
It is possible to get a summary window into a state where different columns are displayed in the status vs. the
configuration grids. In this state, there are "hidden" columns in the configuration grid, because they are actually scrolled to
the left of the grid, but there is no horizontal scrollbar allowing the user to access the hidden columns. They can be forced
into the viewable area by using the arrow keys. To recreate the problem, follow these steps:

1) Open the axis summary window and program it to display four axes.
2) Select the entire grid by clicking on the top, left-most cell.
3) Resize all the columns by dragging right-most tracking handle.
4) Restore the width of every column to the default width by double-clicking on the last tracking handle.
5) Compare the status and configuration grids. They should be displaying the same columns.

602 Tab control doesn't recognize the arrow keys
Prior to this fix, the tab controls used in the new grid controls didn't capture the focus and didn't respond to the arrow keys.
A mouse was necessary to change the tab page.

604 Add Controller button on main menu bar doesn't work
The Add Controller button on the main frame did nothing unless the Object Explorer was open and it was the active win-
dow.

 606 Object sub-objected lists not updated
If Filter F is mapped to Supervisor S, then changing the mapping of motors to Filter F should automatically update the
motor sub-object list for Supervisor S. This wasn't happening when the mapping was done using the Motor Map button on
the Filter Summary. The problem was best demonstrated by configuring the Motor Summary to display motors for
Supervisor S and then modifying the motors mapped to Filter F from the Filter Summary.

 608 Menus not displayed properly
The menus at the top of the main frame were not being displayed properly.

610 Wrong tab page activated when Summary is initially opened
When a summary window is opened, its active page is restored from the .INI file. But, there was a bug that caused the
active view for the window to be set to the first page. This caused all keyboard events to go to the first page, even when a
different page was being displayed.

 611 Summary Window Doesn't Display ToolTips
Prior to this fix, the Summary window wouldn't display ToolTips. Now, ToolTips are displayed when the user hovers over a
tab or any control on a tab page. Note that a different ToolTip will be displayed for each tab that the user hovers over.
Also note that a ToolTip is no longer displayed when the user hovers over the grid, as in the 03.36 series. The ToolTip that
used to be displayed in this situation is now displayed when the user hovers over the active tab.

616 Bottom Tab Minimized when Windows Settings Change
When a Window’s setting was changed, such as the scroll bar width, while Motion Console was running with the Motor
Summary window open, the bottom part of the splitter became minimized.

618 Escaping from Grid Combo List Box Causes Memory Corruption
When the <Esc> key was pressed while a grid combo list box was dropped down, memory was being corrupted. The
problem only manifested itself in the Debug version of MotionConsole.

619 Drop Row and Column always set to first Cell
When a selection of cells were dragged to another grid, the selection could only be dropped at the top, left-most cell.

620 Focus not set to grid when current cell is clicked on
If the focus was on a tab, and the user clicked on the current grid cell, then the focus would not switch to the grid. The
78 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

following procedure recreates the problem:
1) Open a summary window
2) Click on a tab
3) click on the grid cell located at coordinates 1, 1 (this cell is the default current cell)
4) note that the tab doesn't lose the focus, as indicated by the focus

621 Vertical Scrollbar On Filter Coefficients Tab Page Not Calibrated Correctly
When the Coefficients tab page on the Filter Summary window was selected the first time, the vertical ScrollBar was never
calibrated such that it could be used to scroll the view.

Modification Type: CR (Change Request)

Number Name

612 Remove the ability to edit tabs
The feature that allowed the user to change the text displayed on the summary tabs has been removed.

Modified in Version: 03.37.00

Modification Type: NF (New Feature)

Number Name

600 Generalize Configuration Object/Grid
The method used for displaying object attributes in a grid control has been generalized so that it can be used for any set of
objects. The resulting Object/Grid framework can be used in other applications, such as MotionScope. It can also be used
in MotionConsole to display a set of objects that are completely separate from the objects currently displayed. For example,
the framework can be used to add a grid control that can be used to configure the other grid controls.

The following changes are evident to the user when compared to the previous version:

1. The title bar of the Summary windows is thinner
2. The minimize and maximize buttons and the icon have been removed from the Summary title bar
3. The tabs look different. Some aesthetic improvements can still be made to them.
4. The tab labels can be edited by double-clicking on them. The modified name is saved in the .INI file.
5. The splitter bar that divides the status and configuration tab controls can be used to resize their heights.

The changes made were sufficiently extensive to warrant stepping the minor revision number from 03.36 to 03.37. All the
settings saved in the .INI file are labeled differently from those used in the 03.36 series. Therefore, when the 03.37 version
is run for the first time, it will behave as if the .INI file had been removed, i.e. no controllers will be displayed in the Object
Explorer. In fact, both versions of Motion Console share the same .INI file, but changes made while running one version will
not affect the other version. Settings saved in the .INI file include: 1) the number of controllers and their names, 2) the
position of the main window and each child window, 3) the axis trajectory values and 4) the default grid column widths.

Modified in Version: 03.36.16

Modification Type: NF (New Feature)

Number Name

596 Refresh related motor on Motor ConfigSet
Modifying the configuration of a motor may cause the configuration of a related motor to also be modified. This adds the
requirement that Motion Console refresh the configuration of the related motor whenever the configuration of a motor is set.
The library function "meiMotorRelatedStepMotorGet()" is used to find the related motor.

Modified in Version: 03.36.14

Modification Type: NF (New Feature)
Standard Release Note, Ver. 20020117.1.6.1.3 79 of 104

Number Name

590 Add support for transceivers D, E and F
Configuration and status attributes for transceivers D, E and F has been added to the Motor I/O status and configuration
pages. These transceivers are treated in the same way as transceivers A and B.
80 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

4.1.2 XMP Motion Scope

Modified in Version: 01.20.27

Modification Type: Bug (PR)
Number Name

932 [Dup. of 931] Floating Point Data is Rounded to 3 Digits after Decimal Point
 When a pane is saved or exported, floating point data is rounded to 3 digits after the decimal point.

Modified in Version: 01.20.25

Modification Type: DR (Discrepancy Report)
Number Name

826 Cannot save pane data when controller is a client type
 When the user attempts to save pane data for a pane that is connected to a client controller, nothing happens.

Modified in Version: 01.20.24

Modification Type: DR (Discrepancy Report)
Number Name

803 Up the Max Motion Supervisor Number to 33
In the Trigger dialog box, the maximum number for the Motion Supervisor has been increased from 17 to 33.
In the Traces dialog box, the maximum "banded" axis number has been increased to 31.

Modified in Version: 01.20.23

Modification Type: MI (Minor Improvement)
Number Name

790 [Dup. of 789] Merge Japanese Translations Into Production Release Version
Merge the current Japanese translations into the Production Release version.

Modification Type: DR (Discrepancy Report)
Number Name
796 [Dup. of 262] Missing Help File
Clicking on the menu item "Help/Help Topics" will now open an appropriate help document.

Modified in Version: 01.20.22

Modification Type: MI (Minor Improvement)

Number Name

782 [Dup. of 780] Display MPI Library Assertion Violations
MPI library assertion violations are now displayed in a dialog box before the application exits. The user is given the choice of
ignoring the error.

Modified in Version: 01.20.21

Modification Type: FE (Future Enhancement)
Standard Release Note, Ver. 20020117.1.6.1.3 81 of 104

Number Name

765 Add vertical lines to MoScope indicating when motion done, in fine position, at velocity,
... status changes

Stock "status" Traces have been added for each MotionSupervisor in the Traces dialog for AtTarget, AtVelocity, Done,
InCoarsePosition and InFinePosition. These have been set up as "binary" Traces (with values of zero or one) and are the
result of masking and shifting the Status value for a given MotionSupervisor. These approximate the use of vertical lines to
reflect status changes.

766 Increase Trace list to include 32 Axes
Trace list has been extended to include 32 Axes.

Modification Type:DR (Discrepancy Report)

Number Name

770 Cannot open .PAN file that has no data section
When opening a .PAN file that has no data saved in it, the "Include data" checkbox is enabled only if there is a valid data
header and at least one line of seemingly valid data. If the "Include data" is not checked, then the "Read Only" checkbox is
cleared and disabled (as an acquire must be done to display any data). If the "Read Only" checkbox is checked, then the
"Include data" checkbox is checked and disabled (as an acquire is not allowed, so the data in the file must be used).

771 Hex display should only be allowed for ULONG type in Edit Trace dialog.
Hex display is only allowed for ULONG type in the Edit Trace dialog.

772 Trigger display cutoff when "polling" motion detection method is used.
The beginning of the data acquire where the Trigger point would normally be displayed is no longer cutoff when the "polling"
motion detection method is used.

773 Trigger detection by Polling fails with "Bad sample number" upon MotionStart.
Trigger detection by the Polling method no longer fails with a "Bad sample number" message upon MotionStart.

Modification Type: CR (Change Request)

Number Name

777 The default trace list to support up 32 axes (per one SynqNet controller).
The list of axis traces has been increased to match a default of 32 in MT766.

Modified in Version: 01.20.20

Modification Type: FE (Future Enhancement)

Number Name

459 MoScope Controller Reset
A button has been added to the Pane Mode dialog to Reset the MPI Controller.

Modification Type: DR (Discrepancy Report)

Number Name

731 Shift + LMB on Y Range Bar Slider Edge moves traces instead of scaling them
Dragging an edge of the Range Bar with the Left Mouse Button while holding the Shift key down now rescales all the traces.

732 MoScope needs an IP address to "talk" to a server
MoScope failed to initialize a controller over the network when the same controller number was used as some other Pane
using a controller locally. This problem was solved by not checking the usage of controller numbers for remote/server
("Client") connections. Note that erroneous data will be reported if multiple Panes refer to the same Controller by using the
server to connect to the local machine, due to the limit of one application per data Recorder and one date Recorder per
Controller.
82 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

747 Pane with no Traces gets Config error on .INI file open.
A Pane with no Traces used to cause an error on .INI file open, but it is now handled correctly.

748 Assert occurs if YRangeBar clicked when changing focus to Pane with no Traces.
Assert used to occur in Debug version when YRangeBar clicked when changing focus to Pane with no Traces.

764 Pane draw loops when no data from triggered acquire.
A bug where Pane draw loops when there was no data acquired on a trigger event has been fixed.

Modification Type:CR (Change Request)

Number Name

744 Merge File Import with File Open
Merged File Import with File Open. Placed "Read-only" check box in File Open dialog to replace the File Import functionality. A
file opened "read-only" is not attached to a controller or data source and is not allowed to perform acquires. In this manner,
multiple Panes can be opened displaying previously acquired data without regard to Controller-to-Pane limitations.

749 Handle drop in sample numbers from Recorder (unresolved MPI error).
If there is a drop in sample numbers from the Data Recorder due to any MPI errors, then an error message pops up and data
acquisition is halted.

Modified in Version: 01.20.19

Modification Type: CR (Change Request)

Number Name

728 Merge Pane Open/Save with File Open/Save
Merged Pane Open/Save with File Open/Save. Now has only one file type for settings/data files as *.pan. Presence of data
is optional in the files. Removed Pane Open/Save from the menus.

Modified in Version: 01.20.18

Modification Type:FE (Future Enhancement)

Number Name

508 Save trace data along with pane data
The ability to save the current trace data in a pane along with the pane configuration parameters has been added. Opening a
pane file with trace data embedded in it with either File Open or File Import causes the data to be displayed.

Modification Type:DR (Discrepancy Report)

Number Name

698 MoScope dies when zooming in
After data is acquired and traces are displayed, MoScope dies when the user selects a zoom region and clicks on the Zoom
In button.

699 Y-Axis labels and grid lines not redrawn after data acquisition
After data is acquired and graphed, the Y-axis labels and grid lines disappear. They are redrawn if the window is covered
up and then uncovered.

709 File Import data with zero as first x point yields error.
File Import data with zero as first point in the first data column (X axis) is not called an error UNLESS the scaling for the X-axis
 is log10. In this case, zero is an illegal value.

711 XRange edit box not range checking entry against MaxBuffer.
XRange edit box was not being range checked against MaxBuffer, causing an Assert in the Debug version and possible
invalid settings in the Release version. Now, the maximum value of XRange is MaxBuffer.

714 MoScope custom traces not displayed
For a Trace whose data value stays constant for the entire XRange of the Pane (i.e., its YRange is zero), the problem of no
Standard Release Note, Ver. 20020117.1.6.1.3 83 of 104

data being displayed (and no YRangeBar) has been rectified. Now, for those cases where the data is a flat horizontal line,
the YRange for that Trace is set arbitrarily to 10.

Modification Type:CR (Change Request)

Number Name

722 Rename File Import to File Import FFT
Renamed “File Import” to “File Import FFT” for importing FFT files.

723 Change command line parameter for FFT files.
Changed command line parameter to File Import FFT files from "i" to "f". "i" is used for normal File Import files.

724 Change File Open/Save functionality to include data in addition to parameters.
Changed File Open/Save functionality to include data in addition to parameters using the *.mos file extension. Pane
Open/Save still implements the old functionality of using settings only (and still uses the *.pan extension).

725 File Import to read settings and data in read-only mode.
File Import reads settings and data in read-only mode. The same files can be used as for File Open/Save (.mos files), but the
Pane will not be allowed to acquire more data from any source (other than Pane Import). This will allow multiple Panes of
previously acquired data to be displayed (which had been previously restricted due to the one-Pane-per-Controller limitation).

726 Pane Import to read in data from a file in read-only mode.
Pane Import reads in data from a file in read-only mode (and uses the *.txt extension). This is similar to File Import, except that
 Pane settings will not be changed by the file. Note that the number of Traces and Trace attributes need to match those when
 the data was created in order to produce meaningful results.

Modified in Version:01.20.17

Modification Type: MI (Minor Improvement)

Number Name

685 Use Shift Key Consistently on YRangeBar
The following functionality has been added to the YRangeBar:

YRangeBar Slider:
 Shift + Drag LMB - Move all traces

YRangeBar Edge:
 Shift + Drag LMB = Modify range for all traces

YRangeBar Span:
 Shift + Click LMB - Nudge all traces
 Ctrl + Shift + Click LMB Extend all traces

Modification Type: FE (Future Enhancement)

Number Name

701 Add Shift key to LMB Ctrl functions for YRangeBar.
To the YRangeBar the following functionality has been added:

Hi Span LMB Shift Ctrl: Extend up for all Traces.
Li Span LMB Shift Ctrl: Extend down for all Traces.
Slider LMB Shift Ctrl: Truncate for all Traces.

Modification Type:DR (Discrepancy Report)

Number Name
84 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

467 Pane not redrawn correctly when partially covered by another window
If a portion of a pane was covered by a window, that portion of the pane was not redrawn when the window covering it
was moved to a new location. This bug is no longer reproducible.

468 MoScope dies after armed pane is closed
This bug involved creating a second pane, which currently requires a second controller. This bug was reproduced by
following this procedure: 1) open Motion Scope and create pane 0 and configure it to trigger on Motion Start and Buffer full; 2)
 create pane 1 and configure it for triggering on Motion Start and Buffer full; 3) verify that both panes trigger when motion is
commanded on the appropriate Motion Supervisors; 4) save both panes to a file so that you do not have to keep recreating
them after Motion Scope crashes; 5) close both panes and exit Motion Scope for a clean start; 6) restart MoScope and open
the file for pane 0; 7) open the file for pane 1; 8) arm pane 0 and then close it; 9) arm pane 1 and trigger graphing on this pane
 by commanding motion on the Motion Supervisor associated with pane 1; 10) at this point MoScope crashed. This bug is no
longer reproducible.

496 Trace colors are reset after Traces... dialog is run
The trace colors were being reset after the Traces dialog was run.

648 MoScope crashes after a sequence of opening and importing.
The following series of actions used to cause MoScope to crash.

1. Open a new pane and start some data acquisition on it (you'll need MoCon running, of course).
2. While the pane is still graphing, import a .fft file. When it asks to close other panes, click "yes."
3. Immediately, try importing again (without doing ANYTHING else) and pick the same .fft file. Again select "yes" when

asked to close other panes. MoScope should crash. This has been rectified.

670 YOffset edit box not being updated via the Y-RangeBar.
YOffset edit box was not being updated via the Y-RangeBar. This was a result of the removal of the slider controls.

675 File Input hangs on second invocation while closing existing Panes.
File Input hanging on second invocation while closing existing Panes has been fixed. A race condition was eliminated.

678 Pane Export not supporting "hex" display format.
Pane Export now supports "hex" display format.

700 Missing Trace min/max info in .INI gives Assert
Missing Trace min/max info in .INI file (for example, if there is no .INI file) gave an unnecessary Assert in Debug version. This
has been fixed.

Modification Type:CR (Change Request)

Number Name

674 Change File Import input file Data format to not use keys per sample.
Changed File Import input file Data format to not use keys per sample (i.e., "SAMPLE#=").

Modified in Version: 01.20.15

Modification Type:NF (New Feature)

Number Name

592 Add Splash Screen
An MEI splash screen is now displayed as Motion Scope is coming up. The option "-s X" has been added to the command line
to allow the user to disable the splash screen. If the value of X is 0, then the splash screen will be disabled.

691 Make the .INI file a command line option
The option "-p filename" has been added to the command line to allow the user to specify an alternate .INI file. The file name
can be either an absolute path, or it can be a simple file name. In the latter case, the .INI file will be created in the same
directory as the default .INI file, i.e., the windows directory.

Modified in Version: 01.20.14
Standard Release Note, Ver. 20020117.1.6.1.3 85 of 104

Modification Type: MI (Minor Improvement)

Number Name

572 "Counts" scale on MoScope displays fixed number of scale markings, rounding each to nearest integer.
Number of "Counts" scale markings for a Pane are no longer fixed but are now dependent on given window size and the
range of counts in the Pane. Only exact labels are displayed (no rounding of labels is done).

664 Link Panes for Ctrl-LMB cursors operation.
For Panes created via the File Import command the ability to Link Panes for Ctrl-LMB cursors operation has been added. The
File Import FFT file can specify per Plot another Pane to be linked so that cross-hair cursors are displayed in the linked Pane
when Ctrl-LMB is used in the first Pane. Note that the values displayed reflect those at the same relative cursor position in
each Pane. This means that the values probably make the most sense when the XRange and XOffset are the same for each
Pane, as well as for the Y-axis parameters. The Panes do not have to be the same exact size, as proportions are preserved
in the transformation between relative positions.

665 Y-RangeBar StepIn/Out option for application to all Traces simultaneously.
Y-RangeBar StepIn/Out option has been implemented for application to all Traces simultaneously. Applies the proportionate
increase/reduction in YRange for each Trace when this option is invoked. StepInAll is invoked via LMB-Shift-DoubleClick on
the Y-RangeBar slider, and StepOutAll is invoked via RMB-Shift-DoubleClick on the slider.

666 Launch MoScope with FFT file as input via command line.
MoScope can be lauched with an FFT file as input via command line. Use "-i" as the command line flag followed by the FFT
import file name. Must be a legal file acceptable to the File Import menu command.

667 "Full Out" button to apply to Y-axis also.
If Pane is created from a File Import menu command, then the "Full Out" button also applies to the Y-axis. Each Trace is
restored to its original YRange and YOffset settings based upon the MinRange and MaxRange parameters specified in the file
 Imported.

Modification Type:FE (Future Enhancement)

Number Name

458 ZoomIn/ZoomOut with left/right mouse double click
After selecting a ZoomIn area, it is now possible to shift-double click the left mouse button within the ZoomIn area to ZoomIn.
If outside the ZoomBox or if there is no ZoomBox and the Pane has been zoomed in, the same key combination will apply
ZoomOut.

Modification Type:DR (Discrepancy Report)

Number Name

642 Win98 will not import a .fft file
Errors on File Import involving messages with "Bad or missing Data SAMPLE_%u" have been eliminated.

659 Pane Export data not properly scaled for some Traces.
Pane Export data is not having the internal scale factor (usually a sample rate and ms/sec conversion) applied to the ActVel,
TC.Velocity and Accel Traces.

673 Ctrl-LMB on deactivated Pane leaves a little strip.
Use of the Ctrl-LMB no longer leaves a little "strip."

Modification Type:CR (Change Request)

Number Name

660 File Import FFT files should support tab delimiters
File Import FFT files requires tab delimiters instead of commas for separating columns of data.

Modified in Version: 01.20.12
86 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Modification Type:MI (Minor Improvement)

Number Name

453 Difficult to line up cross-hairs at high magnification
When zoomed-in at high magnification, it is now much easier to line up the cross-hairs with a desired point. The cross-hairs
will snap to the nearest point.
647 The icons for new, open, & save in the toolbar have white dots in their graphic
White dots in the graphics for the New, Open, & Save icons in the toolbar have been cosmetically removed.

651 FFT MoScope - Allow Y-RangeBar to slide (change offset) for ALL traces
Enable all Traces to have Offset altered via the Y-RangeBar with RMB-Drag. Single (selected) Trace Offset implementation
remains the same via Y-RangeBar LMB-Drag.

Modification Type:FE (Future Enhancement)

Number Name

456 StepOut with Right mouse double click
Double clicking with the left mouse button on the RangeBar causes a "StepIn." It is now possible to “StepOut” using double
clicking on the right mouse button. This has been implemented for both the X and Y-RangeBars.

501 Enforce a maximum value for MaxBuffer and Range
A maximum value for MaxBuffer and Range is now enforced. The maximum limit for MaxBuffer is now 500,000 samples. The
default values for MaxBuffer and Range are now 10,000 and 5,000 samples, respectively.

502 Print Pane feature
The ability to print the currently active Pane has been added to MoScope via the Pane Print menu command.

503 Print Screen feature
The ability to print the entire Motion Scope screen has been added via the File Print menu command and the Print button on the
standard ToolBar.

505 Display Trace Name in ToolTip
MoScope now displays the names of the closest Trace at a given location on a Pane when the cursor hovers near the Trace
for an extended period of time.

506 Add a RangeBar for the X Axis
A RangeBar for the Y-axis has been added, similar to the RangeBar on the X-axis.

593 Add Accel to trace list
"Accel" has been added to the stock list of Traces.

Modification Type: DR (Discrepancy Report)

Number Name

457 RangeBar nudge size
Left-clicking the mouse in a non-highlighted area of the RangeBar caused the XOffset value to increase arbitrarily. This
increment has now been fixed to be half of the current XRange value.

466 Cannot create pane for controller when Controller # is typed
Bug fix for the following scenario: When the user opens the Pane Mode dialog box and manually enters a number into the
"Controller #" combo box (rather than selecting a number), the number is not accepted after the "OK" button is clicked. The
error message "Controller not available - choose again." is displayed. This issue has now been resolved.

497 Zoombox drawn outside of pane
Zoom boxes are now limited to be completely within the Pane area.

498 Traces with binary values drawn at edge of pane
Traces with "binary" values are now AutoScaled better so that they are drawn within the pane, instead of at the edges.

580 MoScope crash with 28 traces
When 28 or more traces are set, Motion Scope would crash. The number of Traces allowed has now been extended to 30,
Standard Release Note, Ver. 20020117.1.6.1.3 87 of 104

and the user is not allowed to enter more, so MoScope no longer crashes in this scenario.

586 ToolTip for AutoScale is no longer valid
After the new AutoScale features were added, the functionality of the AutoScale button changed, but the tooltip did not.This
condition has been rectified. It now reads, "AutoScale all Traces to their current min and max values in current Range."
587 Tooltip for "Step Out" is wrong
The tooltip for the "Step Out" button should have read "increase range," as opposed to "decrease range." This has now been
 rectified.

588 Holes in data when graphing continuously on Win2K
Bug fix for the following scenario: When trigger conditions are set to "Go Button" and "Stop Button," large holes appear in the
 data during data acquisition. This was only noticed in Win2K (due to its slowness). This was an optimization issue and has
now been resolved.

589 Y-Scale and Y-Offset not updated when new data is acquired
After new data is acquired, the display of Y-Scale and Y-Offset did not change, even though the actual values may have
been different. Selecting a new trace forced the current values of Y-Scale and Y-Offset to be displayed. This issue has
now been resolved.

633 MoScope fails with 20000913 when ini file has MODE=2
The condition where a crash occured when the MoScope .INI file had MODE=2 is now handled gracefully.

 635 Y axis scale in MoScope / trouble with small numbers
Bug fix for the following scenario: The number spacing on the Y axis is uniform regardless of zoom rate. When the user
zooms in really close, numbers are repeated (i.e. -1,-1,-1,0,0,0,1,1,1). This issue has now been resolved.

641 MoScope crashes when trying to import .txt, .xls, or any other type of file than .fft types
Bug fix of crash when File Import done on a file without FFT format (this is determined by the encoding within the file itself
and not by the filename suffix).

644 Radio Button in MoScope gets stuck
Bug fix for the following scenario: In the "Edit Trace Properties" Dialog box, under the "Units" category, the radio button titled
"counts/sec**2" gets stuck if you select it. In other words, once it's selected, you can't unselect it by selecting another radio
button. Instead it actually selects both buttons. This has been resolved.

645 Strange empty window behind new pane dialog box doesn't refresh
Bug fix for the following scenario: This works best if no other pane windows are open in MoScope. Select the "New Pane
Window" icon in the toolbar and while the dialog box is open, there is an empty window behind it. What's actually strange is
that the empty window does not refresh properly if you move something over it (like the dialog box) and you get a tracer
effect. This has now been resolved.

646 Numbers along the x-axis overlap when they get above 100,000
Labels on the X-Axis are no longer allowed to run into each other. This could happen previously when they were six or more
 digits long and the Pane was horizontally sized smaller.

Modification Type: CR (Change Request)

Number Name

654 Ignore MPIControlMessageLIBRARY_VERSION error from mpiControlInit()
If, while the controller is being initialized, an MPIControlMessageLIBRARY_VERSION error occurs, then the error will be
ignored.

655 Add support for MPI version string
The text in the "About Motion Scope" dialog has been modified to correctly display the MPI version. The version of the MPI that
Motion Scope was compiled with has also been added.
88 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Modified in Version: 01.20.08

Modification Type: CR (Change Report)
Number Name

654 Ignore MPIControlMessageLIBRARY_VERSION error from mpiControlInit()

While the controller is being initialized, if an MPIControlMessageLIBRARY_VERSION error occurs, then the error will be

ignored.

655 Add support for MPI version string

The text in the "About Motion Scope" dialog has been modified to correctly display the MPI version. The version of the
MPI that Motion Scope was compiled with has also been added.

Modification Type: DR (Discrepancy Report)

Number Name

536 Misleading line drawn at top and bottom of pane
A line is drawn from the point where the value of a trace goes outside the limit of what is being graphed in the pane, and
where the trace value returns to within the limit of what is being graphed. This gives the appearance that the value remains
flat when in fact the value is off the graph.

540 Zoom in on traces displays nothing
When zooming in on data that crossed in and out of the zoom region many times, often nothing was being displayed. Other
times only a single horizontal line was being displayed.

577 ZoomBox drawn to left of Pane gets "thrown" to the right
When the ZoomBox being drawn crossed over into the area left of the Pane, instead of truncating the ZoomBox at the left
edge of the Pane, the ZoomBox was immediately mirrored to the right across the right-hand edge of itself.

578 Crash upon ZoomIn when no data
When a ZoomBox was drawn when there was no data and the ZoomIn button subsequently pushed, MoScope would
crash.

579 Upon startup, no Traces listed in TraceBox leading to crash upon Go
Upon startup and loading of MoScope, the active Pane saved in the initialization file would come up with no Traces listed in
the TraceList box of the PaneBar. When the Go button was pushed, a crash would occur.
Standard Release Note, Ver. 20020117.1.6.1.3 89 of 104

4.2 Utilities: Open Issues

4.2.1 Motion Console

Issue Type: CR (Change Request)
Number Name
810 Motion Console doesn't display the state of the index input under the Motor Summary's bottom i/o tab

Issue Type: DR (Discrepancy Report)
Number Name
393 CellTips don't work for checkboxes

If the text of a cell does not fit within the cell of an Object Attribute Grid, then the CellTip should display the
complete text of the cell. This feature does not work for cells containing checkboxes.

427 Grid Not Always Drawn Correctly When Selection Changes
Sometimes, selected cells are not being drawn as selected (i.e. with the colors inverted) until some window
event occurs. One way to reproduce this bug is to select the entire table by clicking on the top, leftmost cell of the
grid. When this is done, some cells in the grid are sometimes not drawn as inverted, but then drawn correctly
when the user clicks on the grid or hovers over a control, causing a tooltip to be displayed.

561 Last column cannot be sized to the edge of the grid
The width of the last grid column cannot be moved to the edge of the grid. If the vertical scroll bar is present, then
 attempting to resize the last column will cause the width to snap to a distance of 4 pixels to the left of the right
edge of the grid.

564 Motor Summary XCVR configuration QUADA dependence
When changing XCVRA or XCVRB from "QuadA" or "QuadB" to any other type of configuration, it will not allow you
to do it permenantly unless it is first set to 'INPUT" or "OUTPUT." To repeat the problem, configure XCVRA to
either QuadA or QuadB, and XCVRB to either QuadA or QuadB. Now the problem is getting out ot these
configurations. For example, if you attempt to change XCVRA from QuadA to Step and then leave that mini
window, the window reverts back to QuadA. The only way to get out of this problem is to change QuadA to either
Output or Input values. These values will remain as configurations after leaving the minit window of XCVR.

569 Gray button drawn in origin cell when 1st column is minimized
A faulty button is drawn in the origin cell when the following procedure is followed: 1) select the entire first
column of the Motion Supervisor Actions tab grid; 2) slide the column width to the narrowest possible width. This
 results in the gray button appearing to be a combination of all the buttons in the column.

628 Horizontal Scroll Bar Behaves Strangely When Large Numbers of Objects are Displayed
When some summary windows are programmed to display a large number of objects (more than 20), then the
scroll bar will behave strangely.

637 Creative position zero behavior
If the controller is in open loop sine comm mode, the command position doesn't zero when the "Zero Position"
button in the MS summary is clicked unless the "Clear Fault" button is clicked first.

657 "(Not Available)" listed as an option in pull down menu
In the Motor Summary window, under the I/O configuration tab, all XCVR Config pull-down menus list "(Not
Available)" as an option.

741 User In bit not reported
The User In bit is not reported, when bit is toggled.

750 Sine Comm error message limits abiltiy to fix problem
When the a motor is in closed loop mode and there are not enough aux dacs turned on, an error is returned
when the user tries to switch from closed loop mode to no commutation. No aux dacs should be required to
switch to no commuation mode. This message should be removed in this case.
90 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

759 CW/CCW with Invert causes Parameter invalid error
Using MoCon to configure the XCVRs for CW or CCW works properly. But, selecting the inverted box causes the
config word to display "?!?!?!?!" and the error message "mpiMotorConfigSet: Parameter invalid" to be returned.

This problem does not occur when using the "stepcfg.c" sample application.

761 Pull down boxes only work on primary monitor with a multiple monitor setup on win2k
When using MoCon on a Win2k system with multiple monitors, the pull down boxes don't function on the
secondary monitor, but work on the primary monitor.

774 Two ampersands (&&) in a tooltip are displayed as an underline
Two ampersands that should be displayed in a tooltip are instead being displayed as an underline. Such
tooltips are common on the Motor Summary window, in the Status tab page. This occurs on Win2K with IE.

798 Block count in SynqNet Summary window refresh issue

 807 Panic action does not stick

Issue Type: MI (Minor Improvement)
Number Name
739 Add more detail to tooltips for disabled controller buttons

When a button on the Controller Summary is disabled because the controller is not initialized, some clues can
be added to help the user rectify the situation.

740 Add greater detail to toolbar button tooltips concerning various modes of operation
The action that is executed when a toolbar button is clicked can sometimes be modified by holding down the Ctrl
 or Shift keys. The nature of this modified behavior should be described in detail in the tooltip for each button.

775 Remove Broken Wire and Illegal State for Motor I/O page
Broken Wire and Illegal State statuses are displayed both in the Motor I/O and Status tab pages. They are
somewhat inappropriate for the I/O window because there are no I/O pins associated with them.

799 NULL firmware message
Standard Release Note, Ver. 20020117.1.6.1.3 91 of 104

4.2.2 Motion Scope

Issue Type: CR (Change Request)
Number Name
833 More precision in Motion Scope exported floating point data

Issue Type: DR (Discrepancy Report)
Number Name
542 MoScope fails to draw data on Windows 98

With triggering set to "Go Button" and "Stop Button,” data will accumulate (as seen by the XOffset value
changing), but no traces will be drawn. Changing the status of "View/Status Bar" will cause the pane to draw the
traces. This problem occurs frequently, but irregularly. We have not found a way to reliably reproduce the
problem. We have also not seen this problem on Windows NT.

643 Odd behavior when opening a .pan file
 Here are the steps to reproduce the bug:
1. Open up a .pan file (previously created with File Save from MoScope).
2. Immediately hit the “Go” button.
3. While the plots are being generated, right-click somewhere on the pane and the graphing
will mysteriously disappear.
 Now, if you use the “Stop” button to halt data acquisition, click "Traces" to bring up the Traces list dialog and then
hit the “OK” button, the problem will be solved and any graphing you do after this will not have this behavior.

679 Ctrl-LMB value display hides Y-units label.
Pane Export not supporting "hex" display format.

713 MoScope Data not aligned with scale lines
When collecting/displaying data, sometimes the data points don't align properly with the scale markers on the X
axis. This is easiest to see by turning on the "sample band" in the Pane Display configuration and Displaying in
Units of Samples. The problem can be corrected by forcing a re-draw of the data: sliding the data on/off the
screen, minimizing/maximizing, or zooming in/out.

769 MoScope hangs when opening file multiple times
Motion Scope will sometimes hang when opening a .PAN file. This can be recreated by opening a .PAN file and
then closing the pane. Repeat until the hang occurs: usually after the 4th or 5th time.

776 AutoScale occasionally fails to utilize last portion of data in Range for selected Trace.
AutoScale occasionally fails to utilize last portion of data in Range for selected Trace.

 781 Motion Scope displayes graph as if it missed a sample when it really didn't
While using Motion Scope to record the sample counter while I was testing motion modify code, Motion Scope
displayed some data as if it missed a sample, but while investigating the sample counter I saw that this was not the case.
Perhaps there is some rounding error in the calculation of elapsed time during the motion?

 The sample counter is in white. Even if MoScope missed a sample.

802 The full out button should zoom to the XRange size

806 Motion Scope looses all traces after a SynqNet node dissapears

Issue Type: MI (Minor Improvement)
Number Name
473 Dialog boxes missing ToolTips

None of the dialog boxes display ToolTips.
92 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

662 Be able to parameters precision (number of digits to right of decimal point) for X and Y axis
 Add parameters that provide the ability to modify the precision (number of digits to right of decimal point) for X
and Y axis data labels. Add a separate parameter for the X-axis and parameters per Trace on the Y-axis.

663 Groups to be supported in File Import input FFT files.

Groups to be supported in File Import input FFT files.

818 Extend MoScope Redraw Time parameter
Standard Release Note, Ver. 20020117.1.6.1.3 93 of 104

5 MPI/MEI Libraries: Fixed Bugs
mpiMotorEventConfigGet(...) missing object locks MPI 1816
In a multithreaded application, calls to mpiMotorEventConfigGet(...) and mpiMotorConfigSet(...) from more
than one thread, for the same motor object would cause incorrect "Arg Invalid" errors to be returned. The
problem was caused by missing object locks in mpiMotorEventConfigGet(...). This problem was fixed by
adding object locks to mpiMotorEventConfigGet(...).

Startup script doesn't work when console cable is disconnected MPI 1720
Under some conditions, when no VxWorks console is present, applications will not execute from the star-
tup script specified in the VxWorks boot parameters. This problem was experienced when the console
cable was not attached to the eXMP-SynqNet console port. The cause was due to a bug in the MPI-
VxWorks library and a bug in the standard eXMP VxWorks boot image. This problem has been fixed, but
requires 1.2/1.2 version of the 5.4 VxWorks image. Please contact MEI for more information.

Bug in VxWorks compiler causes positions greater
than 231 to get truncated. MPI 1507
NOTE: This bug only affects systems using VxWorks Version 5.4.
Positions that were greater than 231 were passed as doubles into the MPI. They would get truncated to
0x80000000 when cast as longs and were passed to the controller. This bug occurred when setting the
origin and commanding a motion. This bug is not a caused by a problem in the MPI; it is the result of a bug
in the VxWorks tornado compiler. In certain cases, the compiler would truncate values when casting as a
long. However, using an unsigned long cast seemed to work fine even if the result was assigned to a
(signed) long variable. Changes were made to axis.c and motion.c. Casts were changed from (long) to
(unsigned long) even though the variable receiving the data was a long. In the future, WindRiver might fix
this problem and MEI can change the casts back to (long). See TSR # 414664 at the WindRiver support
site. The cases that we identified as likely problems have been tested and fixed with the (unsigned long)
cast.

Changes to the Compensation Table Calculations MPI 903
Two changes were made to the compensation table calculations. The first change recast a portion of the
compensation value calculation equation from a float to a long. This change was required to eliminate the
immediate toggling of the compensation value on either side of a maximum compensation value in the
table.

The second change removes the compensation value from the actual position that is used by the compen-
sation table to calculate the compensation value. Now the actual position used to calculate the compensa-
tion value is calculated using only the raw encoder count and the origin. This will remove inappropriate
changes in the compensation value caused by changes to the compensation value.

These two changes were made to the 371A4 firmware and the 20020117.1.5 MPI.

sim4calc.exe calibration problem MPI 895
In version 20020117.1.3, sim4calc.exe could calculate incorrect look-up tables. This would cause incorrect
interpolated position values with sinusoidal scales. The problem was caused by a rollver in the calcula-
tions to compensate for scale offsets in the look-up table. This was corrected in version 20020117.1.5.
94 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

Memory Access Violation with multi-point motion MPI 887
In releases 20011220.1.3 and 20020117.1.3, a bug in multi-point motion (i.e. PVT, PT, spline, etc) exists,
which can cause intermitent Memory Access Violation errors. The problem was caused by an invalid
pointer dereference in the frame buffer handling routines. This was corrected in version 20020117.1.5.

Sample Rate change causes motor faults MPI 885
In firmware version 364A3, changing sample rates could cause unexpected motor faults. This was caused
by an internal timing problem between the DSP's interrupt and the serial data communication (Riptide) with
local motion blocks. For a small period of time (1~2 samples), the serial data is not valid. This was cor-
rected by waiting until the Riptide data is stable (when the sample rate is changed) before updating the
background task's status. This was corrected in version 371A4.

Motion Supervisor 23 Initialization MPI 884
In firmware version 364A3, the internal Axis State variable for axis 23 was accidentally initialized to an
incorrect value (0x1A). This caused the MPI to misinterpret the axis's state and a Stopping Error was
reported. This variable has been correctly initialized to a value of 0 in version 371A2.

mpiFilterConfigSet(...) returns PARAM_INVALID error MPI 879
In version 20020117.1.3, mpiFilterConfigSet(...) would improperly return a MPIMessagePARAM_INVALID
error if the Algorithm was PIV and the PostFilter.Length was non-zero. The error was caused by an inter-
nal library check to prevent the Bi-quad blocks from conflicting with the PIV algorithm. The check was not
required. This has been corrected in version 20020117.1.5.

mpiControlInit(...) macro definition MPI 843
In previous versions, the mpiControlInit(...) macro definition had a semicolon at the end, which caused
compilation errors. This typo was corrected in version 20020117.1.5.

meiFlashMemoryVerify(...) missing from flash.h MPI 881
In the 20000913 release, the FPGA and SHARC code was stored in a single flash image. Flash memory
verification was possible using meiFlashMemoryVerify(...). In 20020117.1.3, the FPGA files were sepa-
rated from the SHARC code. During flash download, the flash memory was modified to intialize an index
table for the FPGA images. Thus, the meiFlashMemoryVerify(...) would fail if the entire image (code and
data) was compared to a list of host files. So, the prototype was removed from flash.h. In version
20020117.1.5, the prototype was added back to flash.h. To use meiFlashMemoryVerify(...) successfully,
you will need to first save the existing flash image to a file (.img) using meiFlashMemoryToFileType(...,
MEIFlashFileTypeALL). Then, the flash image file can be compared to the controller's flash image using
meiFlashMemoryVerify(..., MEIFlashFileTypeALL). See the sample program, checkFlash.c for more
details. This error was fixed in the 20020117.1.5 release.

Incorrect FPGA step pulse width MPI 829
In version 242 FPGA for XMP Analog controllers, there was an improperly commented block of code,
which resulted in a shortening of the step pulse by 1/4. This problem was caused by a divide-by-4 piece of
logic that was removed from the pulse stretch time logic. The code was changed to reinstate the divide-by-
4 logic and the problem was fixed.

Device Driver port call failure MPI 767
A new device driver is included in the 20020117 release to fix an existing bug (MPI723) that caused inter-
mittent EEPROM corruption and Motion Console to crash.
Standard Release Note, Ver. 20020117.1.6.1.3 95 of 104

This has been fixed in both WinNT and Win2000 and requires installation from the installShield release for
driver replacement. To verify that the new device driver has been installed, check the date of
(c:)\WinNT\System32\drivers\meixmp.sys. The date of the Win2000 driver file should be 01/21/2002. The
date of the WinNT driver file should be 01/21/2002.

307C2 Frame problem MPI 737
This problem was caused by incorrect handling of the UPDATE frame. This problem has only been
reported in the 307 versions of the firmware. The 307D1 (307C5_307D1 branch) version was created to
correct the problem (307D3 from the 307C6_307D2 branch, does NOT correct the problem). 310 versions
of the firmware were tested and the problem did not occur.

IN_FINE_POSITION is incorrectly calculated MPI 735
This problem was due to a change in 340A1 where the IN_FINE criteria was only checked in the
STOPPED state. This was corrected in firmware 341B3.

Motion DONE occurs before State = IDLE MPI 734
Motion DONE events occur at the beginning of the execution of UPDATE frames, which can be up to 2
samples before the Motion Supervisor state becomes IDLE. This will cause mpiMotionStart() calls occuring
right after a DONE event to cause a MOVING error. This problem has been corrected in the latest release.

EventConfig timeout MPI 691
Under specific conditions an erroneous TIMEOUT return value was returned from mpiMotorEventConfig-
Set(...). This only occured if a limit was disabled using a previous call to EventConfigSet(...) with Condition
Logic set to MEIXmpLogicNEVER. The next call to mpiMotorEventConfigSet(...) would return a timeout.
This bug has been corrected in the latest release.

mpiMotorStatus(...) and meiMotorStatus(...) error MPI 581
In previous versions, mpiMotorStatus(...) and meiMotorStatus(...) returned MPIMessageARG_INVALID if
the external argument was not-NULL. This was corrected in version 20010125.

mpiAxisCommandPositionSet(...) MPI 528
In previous versions, mpiAxisCommandPositionSet(...) would not set the command position if the axis was
in a Stop condition. No error code was returned. Note, setting the command position worked after an E-
Stop or Abort action. During a Stop Action, the XMP continually calculates new command positions, but
uses a feedrate of 0 (this allows us to either resume the motion or back up on path). Because the XMP is
calculating the command position, the MPI is not allowed to write to the command position. In version
20010710, a check was added to the MPI to verify that the command position was successfully set. If the
command position cannot be set, mpiCommandPositionSet(...) will return an error code.

mpiControlReset(...) returns too early 23
In previous releases, mpiControlReset(...) waited a fixed time period for the controller hardware to com-
plete its reset. Occasionally, mpiControlReset(...) would return too early, causing MPI methods to fail.
mpiControlReset(...) has been changed to monitor the controller hardware during reset, returning only after
the reset completion. This was corrected in MPI version 20010130.

FrameBuffer referencing error MPI 632
In version 20010403, when the motion parameter point.retain is set to FALSE with mpiMotionStart(...) , the
internal method meiMotionFrameBufferLoad(...) deletes its frameBuffer after use. Later, when meiMotion-
96 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

FrameBufferLoad(...) is called again, the function assumes the frameBuffer is still valid, and attempts to
access the members Count and Index, which results in a memory referencing error. This was corrected in
version 20010807.

Executing flash utility with server option fails MPI 625
In version 20010403, the utility program flash.exe did not work properly with the "-server" option. This was
corrected in version 20010522.

Reset after Stop MPI 586
In previous versions, performing a mpiMotionAction(MPIActionSTOP), polling mpiMotionStatus(...) for the
axis to be IDLE, and then performing mpiMotionAction(MPIActionRESET) can cause the following error:

ERROR 0xd09: Motion: MPIStateSTOPPING

This occurred because the method mpiMotionStatus(...) reads directly from the XMP axis status. mpiMo-
tionAction(MPIActionRESET) checks the status of the XMP motion supervisor status. The firmware
updates the MS status from the Axis status in the background cycle. It takes at least one sample for the
MS status to reflect the IDLE state from the Axis status. Therefore a MPIActionRESET immediately after
the axis status changes to IDLE can produce MPIStateSTOPPING errors because the DSP has not yet
updated the MS status. This was corrected in version 20010524.

mpiMotorIoGet(...) and mpiMotorIoSet(...)
access different parts of memory MPI 573
In previous versions, if the following MPI calls are made consecutively with the same MPIMotor object as
an argument, the changes made by the first call to mpiMotorIoSet(...) could be erased because of Riptide
latencies.
 mpiMotorIoGet(...), mpiMotorIoSet(...), mpiMotorIoGet(...), mpiMotorIoSet(...)

These were corrected in version 20010614.

Action synchronization between the MPI and Firmware MPI 544
In many cases the MPI writes a value to the XMP, the XMP processes the data, calculating a new value
(foreground and/or background cycle) and then the MPI reads this new value. In some specific cases, the
MPI is not protected from reading the data before the XMP has completed its processing. In these cases,
the MPI will read the old value. Here are the unprotected dependencies:

1) Motor->IO.DedicatedOUT.IO (read by mpiMotorIoGet(...)) depends on Motor->IO.HostOutput
(set by mpiMotorIoSet(...))

2) SystemData->Gate (read by meiControlGateGet(...) depends on SystemData->HostGate (set
by meiControlGateSet(...))

This was corrected in version 20010614.

Motion supervisor pointer problem MPI 516

When changing the motion supervisor to axes mapping, the motion supervisor pointer in the axes objects
continues to point to a motion supervisor after the motion supervisor stops pointing to the axis. This can
cause strange behavior, such as axes that are in an error state resuming motion when another axis is set
in motion. This problem only arises when an application changes the mapping of axes to motion supervi-
sors in the middle of an application and does not reassign the old axes to new motion supervisors.
Standard Release Note, Ver. 20020117.1.6.1.3 97 of 104

Motion Modify Problem MPI 769
In version 2000072803, if mpiMotionModify(...) was called during a Stop action, it could have incorrectly
returned an MPIMessageOK without having modified the move. This problem was caused by an improper
error check in the mpiMotionModify(...). At the end of a Stop action, if the command velocity was zero and
the Done status bit had not been set, the MPI would incorrectly consider the Stop action complete. This
problem was corrected in versions 2000072804 and 20011213. Now, the mpiMotionModify(...) routine cor-
rectly checks to see if the Stop action is complete. If it is not complete, it will return a STOPPING error
code.

mpiRecorderRecordGet() returns corrupted data MPI 713
A recorder overflow can occur whenever the XMP fills the record buffer faster than the MPI can remove the
data. Since the record buffer is circular, an overflow can cause new records to overwrite older records. In
version 20000913, if the MPI read records when an overflow occured, the data might have a mix of new
and old records. The overflow recovery has been improved in version 20011213. When an overflow
occurs, the MPI only reads the new records and omits the old records, preserving data integrity.

Motion Modify does not work when command position is reached MPI 697
The firmware motion supervisor code would not change the command position when a call to mpiMotion-
Modify(...) was made after the command position had reached the target position even though the motion
had not been completed (met the settling criteria). This problem has been fixed in the 341B2 firmware. A
call to mpiMotionModify(...) can now be made before or after the command position has reached the target
position.

mpiMotorConfigGet() error MPI 688
In version 20010417.1, mpiMotorConfigGet(...) would return a
MEIMotorTransceiverConfigNOT_AVAILABLE error if both the MPIMotorConfig and MEIMotorConfig
structures were passed. This was caused by the MPI not reading the Stepper ResourceNumber from the
controller. This bug was corrected in version 20011213.

Incorrect Motion Profile with mpiMotionModify() MPI 686
In Version 325B2, if mpiMotionModify(...) was called with the same motion parameters as the executing
move while moving in the negative direction, the resultant motion profile would have a discontinuity. This
problem was fixed in firmware version 347B1.

Motion Modification Bug for Velocity Moves MPI 683
In version 325B2, mpiMotionModify(...) would cause a trajectory discontinuity with velocity type moves.
This was fixed in version 347B1.

Config Utility does not save DRate coefficient MPI 672
In previous versions of the config.exe utility, the filter coefficient value for DRate was being incorrectly
saved. Upgrading XMP configurations using a config utility output file from a previous version will restore
incorrect values for DRate. MEI suggests setting the configuration using the config utility and then manu-
ally modifying the DRate in Motion Console. This suggestion only applies to customers using the PID con-
trol algorithm and the config.exe utility for XMP configuration. This discrepency has been resolved in the
20011213 release.
98 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

mpiControlReset(...) locks up PCI bus MPI 659
In firmware version 310B (and older), under certain, very rare timing conditions, an mpiControlReset(...)
could lock-up the PCI bus for half a second. This was caused by an internal controller flag that was moni-
tored by the firmware during a reset. This potential problem was corrected in firmware version 347B1.

Modification of Velocity Integrator term in PIV loop MPI 639
In firmware version 310, Kiv was not multiplied optimally. This resulted in the contribution of the integrator
actually exceeding the limit, because the limit was applied before multiplying by Kiv. This caused nonlinear
behavior and integrator windup. This problem was corrected in firmware version 310J1. The integration
limit is now applied after summation, which limits the output of the integration portion of the velocity loop.

Kfff bug in PIV algorithm MPI 637
Friction Feed Forward (Kfff) was incorrectly applied to the filter output in firmware versions 295A3 to
310B3, when using the PIV algorithm. Kfff is applied correctly with the PID algorithm, but in the PIV algo-
rithm, Kfff was added in two places: in the velocity loop and after the velocity loop. As a result of Kfff being
incorrectly applied with the PIV algorithm, there is potential for an unexpectedly high output in the direction
of commanded motion, which could cause instability. This problem only occurs if Kfff is set to a non-zero
value. The default value for Kfff is zero. In the fixed version, Kfff is added only after the velocity loop. This
was corrected in firmware version 307C4 and 310J1.

MPIMotionTypeSPLINE motion error MPI 633
Calling mpiMotionStart(...) with motion type MPIMotionTypeSPLINE generated a profile with a large com-
mand position jump near the end of the move. This was caused by an error in the algorithm that looked
one point beyond the end of the positions list. As this value was uninitialized, the resultant profile included
a potentially large command position jump. This was corrected in the 2000091303 release.

No AT_TARGET with path motion MPI 630
In the 2000072802 release AT_TARGET status and event were not issued during path motion when each
axis had different target values. This problem was corrected in the 2000072803 release.

PIV parameter structure mismatch MPI 603
In the 20000913 release, a mismatch between the DSP PIV Algorithm and the MEIFilterGainPIV structure
existed. This mismatch caused the last 15 PIV filter coeffecients to be incorrectly labeled. This mismatch
was fixed in the 20001103 release.

meiFrameBufferLoad(...) empty limit disable bug MPI 584
In previous versions, a boundary condition existed in the path motion algorithm, which occasionally caused
the controller to stop an axis with an unexplained error state. The problem occured when the last frame
buffer load was exactly 64 frames. The load algorithm did not check to see if the 64th frame was the last
frame. This caused a buffer low event, stopping the axes, and triggering a false EMPTY_LIMIT. This was
corrected in version 20010131.

Position Error requires two ActionRESETS MPI 574
In previous versions, when an axis was ABORTed and there is a position error, mpiMotionAction(..., MPI-
ActionRESET) did not always clear the position error properly. Sometimes, mpiMotionAction(...) needed to
be called twice. This problem was corrected in firmware version 320A1.

User Limit race condition MPI 565
In previous versions, a possible race condition exsited between the MPI and the XMP firmware with user
Standard Release Note, Ver. 20020117.1.6.1.3 99 of 104

limits. The problem occurs when the XMP executes a limit condition while the MPI is writting to the limit
structure. If the MPI sets the outputPtr to zero while disabling an enabled limit there is the posibility of dia-
bling the execution of the XMP's DSP.

This problem was corrected by adding a handshake state variable between the DSP and the MPI. The
possible states are IDLE, MODIFY and DONE. In the MPI, when meiMotorEventLimitSet(...) is called, it
waits for the syncronization word (modifyState) to be IDLE. If the state is IDLE, then the MPI sets the state
to MODIFY, writes the limit structure to XMP memory, then sets the state to DONE. The firmware will not
process the data if the state is not IDLE. This problem was corrected in version 20010105.

DAC limit and OutputOffset Changes MPI 562
In previous firmware versions, when configured for PID or PIV filter mode, the OutputOffset filter coefficient
was added to the output value after the bipolar output limits were checked. For example, if the PID or PIV
filter output was 32767 (10 volts) and the OutputOffset is 0, the DAC value is 32767. If OutputOffset was 1,
the DAC value is 32768 (-10.0) volts. This problem was corrected by bounding the filter output value to 16
bits, before writing to the DAC. Also, the OutputOffset is now applied before the output limits. This problem
was corrected in firmware version 320A1 and 310J1.

Encoder termination always set MPI 551
In version 200000913, encoder termination was always active and could not be cleared. Encoder termina-
tion can now be turned on or off by using the encoder termination field in the MEIMotorConfig{...} data
structure when calling the MEIMotorConfigSet(...) method. This bug was fixed in version 2000091302 soft-
ware.

Multi-axis motion modify during acceleration MPI 525
In version 310B3 firmware, if two axes were accelerating towards a target position (in the same Motion
Supervisor) and the motion was modified to reach a further target position, the acceleration changed to 0.0
and after a while, the acceleration resumed back to its original commanded value. This problem was
caused by the point-to-point algorithm for multiple axes. This problem was corrected in the new S-Curve/
Trapezoidal algorithm, which was implemented in firmware version 325B1.

mpiMotionAction(RESUME) does not resume motion MPI 524
In firmware version 310B3, when a STOP occured, the firmware decellerated the axis by decreasing the
feedrate. Once the feedrate became 0, the axis settled. Once settled, the done bit was set and the axis
entered the IDLE state. A MPIActionRESUME cleared the STOP bit, but did not change the state of the
axis. Since the axis was still in the IDLE state, the MS set the feedrate to 0, so that the axis would not
resume motion. This problem was fixed in version 310B5 and 325A1.

Zero time value in S_CURVE Frame from MotionModify MPI 519
In previous versions, if mpiMotionModify(...) is called during the first sample of the previous motion profile,
the firmware would incorrectly calculate zero for the frame execution time. This causes the motion profile
to halt execution. This was corrected in firmware version 311A1.

mpiCaptureConfigGet/Set Bug MPI 482
In previous MPI versions, mpiCaptureConfigGet(...) did not return proper values for mask and pattern.
This was corrected in version 20010119.
100 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

6 MPI/MEI Libraries: Outstanding Bugs, Limitations
6.1 Known Bugs

Win2000 Device Driver System Stand by Error MPI 741
The XMP Windows 2000 device driver will not allow a host system go into "Standby" or "Hibernation"
mode. This bug will be corrected in a subsequent release.

Motor XCVR configuration QUADA dependence MPI 508
Changing XCVRA or XCVRB from QuadA or QuadB, to Step or Dir will result in XCVRA or XCVRB remain-
ing configured for QuadA or QuadB. In order to change XCVRA or XCVRB from QuadA or QuadB to Step
or Dir, first change QuadA or QuadB to any other value except Step and Dir, such as Input, Output, CW, or
CCW. Once it has been changed to one of these other values, it is possible to configure the XCVR’s for
Step and/or Dir. (See 564 in section 4.21 Motion Console: Open Issues)

Input
 QuadA Step QuadA Output Step
 QuadB Dir QuadB CW Dir

CCW
Standard Release Note, Ver. 20020117.1.6.1.3 101 of 104

6.2 Known Limitations

Motion Modify Overshoots MPI 836
An overshoot will occur when mpiMotionModify(...) is called:

- with the same motion parameters that were used with the mpiMotionStart(...) method.
- with a deceleration greater than the acceleration.
- during the deceleration part of the move.

DRate limited in firmware MPI 703
The Filter object's DRate (derivative sub-sampling rate) is limited to a range from 0 to 7. Values greater
than 7 are not valid.

WinNT Driver Invalid Board Number Bug MPI 568
The MEIXMP device driver can support a maximum of 8 XMP-Series controllers.

Firmware support for jogging MPI 554
The MPI has a motion type for jogging (MPIMotionTypeJOG), but presently the firmware does not support
it.

Brake Enable/Disable Delay MPI 533
The Brake feature sets the User Output to an Active state when an Abort Event occurs. The "Brake Delay"
specifies the amount of time to delay between the Abort Event and setting the User Output bit. Presently,
the only way to clear the Brake is with a Controller Reset.

Frame buffer overwritten by Start/Modify append MPI 532
Each axis has a 128 frame buffer (FIFO). Motion Start and Motion Modify calls will load up to 10 frames. No
provision has been made to check if the new frames will overwrite currently executing frames. This could
happen after about 12 Start/Modify calls are made with the APPEND attribute.

Gear Ratio with Stepper Axes MPI 522
The MEIXmpAxisGear firmware feature only supports servo motor types. The axis gear feature does not
support step motor types.

MEI Motion Attribute limitations in Sequences MPI 488
The following MEI motion attributes are supported in motion sequences:

• MEIMotionAttrMaskFINAL_VEL
• MEIMotionAttrEVENT

Other motion attributes will be available in future releases.

MPI motion attribute limitations in Sequences MPI 487
The following MPI motion attributes are supported in motion sequences:

• MPIMotionAttrMaskID
• MPIMotionAttrMaskDELAY

Other motion attributes will be available in future releases.

PT/PVT Motion Types currently unsupported in Motion Sequences MPI 486
These motion types will be available in future releases.
102 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

BSpline motion MPI 470
AUTO_START is not yet supported for BSpline motion.

mpiCommandPositionSet(...) failure 461
mpiCommandPositionSet(…) does not set the command position

• when the axis is in a MOVING or ERROR state
• after a STOP, E_STOP, or ABORT event has occurred

The mpiCommandPositionSet(…) does not return an error code when called during these conditions.
NOTE: a call to mpiMotionAction(…, RESET) makes it possible to set the command position.

Non-integer relative moves 442
When successive non-integer length relative motions are commanded, the fractional portion is truncated
and discarded. This may cause problems if the fractional value needs to be summed over multiple moves.

Axis jumps on frame buffer underflow 435
If E-stop deceleration rates are not set high enough to stop within the number of frames specified by the
empty frame limit, the axis jumps on a frame underflow. The axis will E-stop along the path of the last
frames in the buffer, then continue onto the next frames (which are the frames from 128 frames ago). This
can potentially cause a dangerous condition.

Default Commutation OutputLevel is non-zero 433
The default open-loop commutation output level is set to 8192, representing 2.5 V at the DACs. This level
can damage a motor winding and drive. Since a drive gain and motor safe current levels are unknown, the
correct value should be 0.0, so that the open-loop current level may be intentionally set by the user.

mpiCommandCreate(...) fails with MotionModify CRN 399
MPIMotionModify is not supported in sequences.

MS/Axis Mapping Error Code CRN 353
Misleading time-out errors are returned when trying to manipulate improperly mapped motion supervisors.

Motion Modify with Delay CRN 289
MPI motion with Modify is not supported with the Delay attribute.

Motion Events with Motion Supervisors sharing axes CRN 243
When using multiple Motion Supervisors that share axes, Motion events (Done, AtVelocity) are sent to both
Motion objects, no matter which Motion Supervisor commanded the motion. This occurs, because the
Motion events are derived from the Motion Supervisor status, which is derived from each axis’ status.

Software Position Limit can produce both Positive and
Negative limit events CRN 13
When the distance between the positive and negative limit configurations exceed 32 bits (4,294,967,296
counts), both limits are triggered. The distance between the positive and negative software position limits
must be less than 32 bits (4,294,967,296 counts).

Long point-to-point moves 06
The XMP firmware velocity frame execution time cannot exceed 16,384,000 samples. With the sample
rate configured for 2000 (default), the maximum velocity time is 2.27 hours. If the commanded motion
exceeds the maximum frame time, the axes will stop abruptly after 16,384,000 samples. The motors will
still maintain servo control and no errors are reported.
Standard Release Note, Ver. 20020117.1.6.1.3 103 of 104

7 Addendum
This section describes the changes between version 20020117.1.6.1.3 and 20020117.1.6.1.5.

7.1 mpiMotionEventNotify Causes Crash
 with RELEASE library MPI2347
If a motion object is created with no axes and the motion object is passed to mpiMotionEventNotify(...)
using the RELEASE library, mpiMotionEventNotify(...) fails with a memory protection fault.

This problem is caused by accessing the axis handles associated with a motion object when no axis
handles are available.

The MPI RELEASE library is now compiled with the MEI_VALIDATE option to verify all object handles
before using them.
104 of 104 Standard Release Note, Ver. 20020117.1.6.1.3

	1 Introduction
	1.1 System Requirements
	1.1.1 Operating System
	1.1.2 Visual C++ DLLs

	1.2 Installing the Distribution

	2 General Changes
	2.1 Addtion of Multiple Injection Point Noise Source to xmp firmware MPI 899
	2.2 Multi-Point Motion Buffering Improvements MPI 889
	2.3 New On-Line Documentation System
	2.4 New Default XMP-Series Controller Configuration MPI 667
	2.5 New UserVersion in MPIControlConfig{...} MPI 538
	2.6 Changed DAC level units to volts MPI 535
	2.7 Addition of Branch identification to Firmware/MPI version MPI704
	2.8 Path Motion works with all Interpolation Algorithms MPI660
	2.9 Flash Utility Now Supports Flash from File Interface Changes MPI629
	2.10 Flash from File Interface Change MPI595
	2.11 Dac Object Removed MPI628
	2.12 New S-Curve Jerk Algorithm MPI615
	2.13 S-Curve Jerk Algorithm Attributes MPI623
	2.14 Configurable Record Buffer Size MPI577
	2.15 Dynamic Allocation of External Memory Buffers MPI575
	2.16 mpiAxisActualVelocity argument changed MPI546
	2.17 mpiAxisPositionError(...) added MPI518

	3 Incremental Changes
	Version 20020117.1.6.1.3
	Version 20020117.1.6.1.2
	Version 20020117.1.6.1.1
	Version 20020117.1.6
	Version 20020117.1.3
	Version 20020117.1
	Version 20020117
	Version 20011213
	Version 20010417.1

	4 Motion Console and Motion Scope
	4.1 Utilties: Closed Issues
	4.1.1 XMP Motion Console
	4.1.2 XMP Motion Scope

	4.2 Utilities: Open Issues
	4.2.1 Motion Console
	4.2.2 Motion Scope

	5 MPI/MEI Libraries: Fixed Bugs
	mpiMotorEventConfigGet(...) missing object locks MPI 1816
	Startup script doesn't work when console cable is disconnected MPI 1720
	Bug in VxWorks compiler causes positions greater than 231 to get truncated. MPI 1507
	Changes to the Compensation Table Calculations MPI 903
	sim4calc.exe calibration problem MPI 895
	Memory Access Violation with multi-point motion MPI 887
	Sample Rate change causes motor faults MPI 885
	Motion Supervisor 23 Initialization MPI 884
	mpiFilterConfigSet(...) returns PARAM_INVALID error MPI 879
	mpiControlInit(...) macro definition MPI 843
	meiFlashMemoryVerify(...) missing from flash.h MPI 881
	Incorrect FPGA step pulse width MPI 829
	Device Driver port call failure MPI 767
	307C2 Frame problem MPI 737
	IN_FINE_POSITION is incorrectly calculated MPI 735
	Motion DONE occurs before State = IDLE MPI 734
	EventConfig timeout MPI 691
	mpiMotorStatus(...) and meiMotorStatus(...) error MPI 581
	mpiAxisCommandPositionSet(...) MPI 528
	mpiControlReset(...) returns too early 23
	FrameBuffer referencing error MPI 632
	Executing flash utility with server option fails MPI 625
	Reset after Stop MPI 586
	mpiMotorIoGet(...) and mpiMotorIoSet(...) access different parts of memory MPI 573
	Action synchronization between the MPI and Firmware MPI 544
	Motion supervisor pointer problem MPI 516
	When changing the motion supervisor to axes mapping, the motion supervisor pointer in the axes ob...
	Motion Modify Problem MPI 769
	mpiRecorderRecordGet() returns corrupted data MPI 713
	Motion Modify does not work when command position is reached MPI 697
	mpiMotorConfigGet() error MPI 688
	Incorrect Motion Profile with mpiMotionModify() MPI 686
	Motion Modification Bug for Velocity Moves MPI 683
	Config Utility does not save DRate coefficient MPI 672
	mpiControlReset(...) locks up PCI bus MPI 659
	Modification of Velocity Integrator term in PIV loop MPI 639
	Kfff bug in PIV algorithm MPI 637
	MPIMotionTypeSPLINE motion error MPI 633
	No AT_TARGET with path motion MPI 630
	PIV parameter structure mismatch MPI 603
	meiFrameBufferLoad(...) empty limit disable bug MPI 584
	Position Error requires two ActionRESETS MPI 574
	User Limit race condition MPI 565
	DAC limit and OutputOffset Changes MPI 562
	Encoder termination always set MPI 551
	Multi-axis motion modify during acceleration MPI 525
	mpiMotionAction(RESUME) does not resume motion MPI 524
	Zero time value in S_CURVE Frame from MotionModify MPI 519
	mpiCaptureConfigGet/Set Bug MPI 482

	6 MPI/MEI Libraries: Outstanding Bugs, Limitations
	6.1 Known Bugs
	Win2000 Device Driver System Stand by Error MPI 741
	Motor XCVR configuration QUADA dependence MPI 508

	6.2 Known Limitations
	Motion Modify Overshoots MPI 836
	DRate limited in firmware MPI 703
	WinNT Driver Invalid Board Number Bug MPI 568
	Firmware support for jogging MPI 554
	Brake Enable/Disable Delay MPI 533
	Frame buffer overwritten by Start/Modify append MPI 532
	Gear Ratio with Stepper Axes MPI 522
	MEI Motion Attribute limitations in Sequences MPI 488
	MPI motion attribute limitations in Sequences MPI 487
	PT/PVT Motion Types currently unsupported in Motion Sequences MPI 486
	BSpline motion MPI 470
	mpiCommandPositionSet(...) failure 461
	Non-integer relative moves 442
	Axis jumps on frame buffer underflow 435
	Default Commutation OutputLevel is non-zero 433
	mpiCommandCreate(...) fails with MotionModify CRN 399
	MS/Axis Mapping Error Code CRN 353
	Motion Modify with Delay CRN 289
	Motion Events with Motion Supervisors sharing axes CRN 243
	Software Position Limit can produce both Positive and Negative limit events CRN 13
	Long point-to-point moves 06

	Chapter7.pdf
	1 Introduction
	1.1 System Requirements
	1.1.1 Operating System
	1.1.2 Visual C++ DLLs

	1.2 Installing the Distribution

	2 General Changes
	2.1 Addtion of Multiple Injection Point Noise Source to xmp firmware MPI 899
	2.2 Multi-Point Motion Buffering Improvements MPI 889
	2.3 New On-Line Documentation System
	2.4 New Default XMP-Series Controller Configuration MPI 667
	2.5 New UserVersion in MPIControlConfig{...} MPI 538
	2.6 Changed DAC level units to volts MPI 535
	2.7 Addition of Branch identification to Firmware/MPI version MPI704
	2.8 Path Motion works with all Interpolation Algorithms MPI660
	2.9 Flash Utility Now Supports Flash from File Interface Changes MPI629
	2.10 Flash from File Interface Change MPI595
	2.11 Dac Object Removed MPI628
	2.12 New S-Curve Jerk Algorithm MPI615
	2.13 S-Curve Jerk Algorithm Attributes MPI623
	2.14 Configurable Record Buffer Size MPI577
	2.15 Dynamic Allocation of External Memory Buffers MPI575
	2.16 mpiAxisActualVelocity argument changed MPI546
	2.17 mpiAxisPositionError(...) added MPI518

	3 Incremental Changes
	Version 20020117.1.6.1.3
	Version 20020117.1.6.1.2
	Version 20020117.1.6.1.1
	Version 20020117.1.6
	Version 20020117.1.3
	Version 20020117.1
	Version 20020117
	Version 20011213
	Version 20010417.1

	4 Motion Console and Motion Scope
	4.1 Utilties: Closed Issues
	4.1.1 XMP Motion Console
	4.1.2 XMP Motion Scope

	4.2 Utilities: Open Issues
	4.2.1 Motion Console
	4.2.2 Motion Scope

	5 MPI/MEI Libraries: Fixed Bugs
	mpiMotorEventConfigGet(...) missing object locks MPI 1816
	Startup script doesn't work when console cable is disconnected MPI 1720
	Bug in VxWorks compiler causes positions greater than 231 to get truncated. MPI 1507
	Changes to the Compensation Table Calculations MPI 903
	sim4calc.exe calibration problem MPI 895
	Memory Access Violation with multi-point motion MPI 887
	Sample Rate change causes motor faults MPI 885
	Motion Supervisor 23 Initialization MPI 884
	mpiFilterConfigSet(...) returns PARAM_INVALID error MPI 879
	mpiControlInit(...) macro definition MPI 843
	meiFlashMemoryVerify(...) missing from flash.h MPI 881
	Incorrect FPGA step pulse width MPI 829
	Device Driver port call failure MPI 767
	307C2 Frame problem MPI 737
	IN_FINE_POSITION is incorrectly calculated MPI 735
	Motion DONE occurs before State = IDLE MPI 734
	EventConfig timeout MPI 691
	mpiMotorStatus(...) and meiMotorStatus(...) error MPI 581
	mpiAxisCommandPositionSet(...) MPI 528
	mpiControlReset(...) returns too early 23
	FrameBuffer referencing error MPI 632
	Executing flash utility with server option fails MPI 625
	Reset after Stop MPI 586
	mpiMotorIoGet(...) and mpiMotorIoSet(...) access different parts of memory MPI 573
	Action synchronization between the MPI and Firmware MPI 544
	Motion supervisor pointer problem MPI 516
	When changing the motion supervisor to axes mapping, the motion supervisor pointer in the axes ob...
	Motion Modify Problem MPI 769
	mpiRecorderRecordGet() returns corrupted data MPI 713
	Motion Modify does not work when command position is reached MPI 697
	mpiMotorConfigGet() error MPI 688
	Incorrect Motion Profile with mpiMotionModify() MPI 686
	Motion Modification Bug for Velocity Moves MPI 683
	Config Utility does not save DRate coefficient MPI 672
	mpiControlReset(...) locks up PCI bus MPI 659
	Modification of Velocity Integrator term in PIV loop MPI 639
	Kfff bug in PIV algorithm MPI 637
	MPIMotionTypeSPLINE motion error MPI 633
	No AT_TARGET with path motion MPI 630
	PIV parameter structure mismatch MPI 603
	meiFrameBufferLoad(...) empty limit disable bug MPI 584
	Position Error requires two ActionRESETS MPI 574
	User Limit race condition MPI 565
	DAC limit and OutputOffset Changes MPI 562
	Encoder termination always set MPI 551
	Multi-axis motion modify during acceleration MPI 525
	mpiMotionAction(RESUME) does not resume motion MPI 524
	Zero time value in S_CURVE Frame from MotionModify MPI 519
	mpiCaptureConfigGet/Set Bug MPI 482

	6 MPI/MEI Libraries: Outstanding Bugs, Limitations
	6.1 Known Bugs
	Win2000 Device Driver System Stand by Error MPI 741
	Motor XCVR configuration QUADA dependence MPI 508

	6.2 Known Limitations
	Motion Modify Overshoots MPI 836
	DRate limited in firmware MPI 703
	WinNT Driver Invalid Board Number Bug MPI 568
	Firmware support for jogging MPI 554
	Brake Enable/Disable Delay MPI 533
	Frame buffer overwritten by Start/Modify append MPI 532
	Gear Ratio with Stepper Axes MPI 522
	MEI Motion Attribute limitations in Sequences MPI 488
	MPI motion attribute limitations in Sequences MPI 487
	PT/PVT Motion Types currently unsupported in Motion Sequences MPI 486
	BSpline motion MPI 470
	mpiCommandPositionSet(...) failure 461
	Non-integer relative moves 442
	Axis jumps on frame buffer underflow 435
	Default Commutation OutputLevel is non-zero 433
	mpiCommandCreate(...) fails with MotionModify CRN 399
	MS/Axis Mapping Error Code CRN 353
	Motion Modify with Delay CRN 289
	Motion Events with Motion Supervisors sharing axes CRN 243
	Software Position Limit can produce both Positive and Negative limit events CRN 13
	Long point-to-point moves 06

