

Methods Breakdown
--Table of Contents--

---Topic--- pg
Object Methods 2

Configuration Methods 3

Memory Methods 7

Status Methods 13

Event Notification Methods 17

List Methods 19

Identity Methods 27

Table of Contents for SERCOS

http://support.motioneng.com/soft/toc_methods.html [1/10/2002 11:57:44 AM]

Object Methods

Introduction | Common Methods for MPI Objects
mpiObjectCreate(...) | mpiObjectDelete(...) | mpiObjectValidate(...)

Introduction
Object-oriented languages such as C++ and Java provide capabilities such as inheritance
and polymorphism. The MPI is written in the C language, and so these more exotic
object-oriented features are not available. However, the basic concepts of object-oriented
design are in the MPI: modularity, data hiding and no global or static data.

It’s similar to C++
If you are already familiar with C++, you will quickly realize that the MPI methods that
create and delete objects are patterned after C++ constructors and destructors. An MPI
method takes an object as its first argument, much as a C++ method has a “this” pointer.
Object data is private and available only by calling object methods. MPI source code is
organized into modules, with one object per module. Library state is distributed across
application-created objects; there is virtually no state information maintained by the
library.

All object methods and all functions return a value indicating whether the call to them
succeeded or not. In general, the return value is of type long, with a value of 0 indicating
success. The return value can be treated as an MPIMessage, so that you can call the
mpiMessage(...) function to obtain a text string that describes the return value. The text
string that indicates a successful return value of MPIMessageOK (0) is empty (“”).

All MPI objects must implement certain required methods. Note that most MPI objects
implement standard configuration and memory methods; many MPI objects implement
standard status and list manipulation methods and a few objects implement standard event
notification methods. For multi-threaded environments, all objects must implement
standard resource allocation timeout methods.

In general, there are few methods that are unique to an object, and those unique methods
tend to be those that perform object-specific actions. The following sections describe the
standard methods that are implemented by many objects. For specific details about objects
and their methods/functions, refer to the breakdown of Objects.

Where used in the rest of this section, the word Object may be replaced with the name
of an MPI object in order to obtain the name of the methods for that object.

Example For the term mpiObjectCreate(...), replace Object with Axis to
obtain the name of the method that you would use to create Axis
objects, mpiAxisCreate(...).

For the term MPIObject, replace Object with Axis to obtain the
data type of the Axis handle (MPIAxis) returned by the Axis
method mpiAxisCreate(...), and also used by other Axis methods,
such as mpiAxisValidate(...).

Object Methods

http://support.motioneng.com/soft/obj_methods.htm (1 of 4) [1/10/2002 1:45:15 PM]

http://support.motioneng.com/soft/search_object.htm

Common Methods for MPI Objects
All MPI objects have four types of common methods:

methods which create an object❍

methods which delete an object❍

methods which validate an object❍

methods which identify an object❍

mpiObjectCreate(...)
Use the Create method to create an object and return a handle that uniquely identifies that
object. The MPI does not support declaring an object directly, so you must always use the
Create method. The Create method is the only method that does not take an object handle as
its first argument. The Create method arguments depend on the type of object being created.

If an object cannot be created, the value of the handle returned is MPIHandleVOID, which
typically indicates only that no memory is available to hold the object. If memory is available
to create the object, but the Create method encounters an error, then the Create method
returns a handle, but the object referenced by the handle is not valid. A call to the
mpiObjectValidate(...) method returns a value that indicates whether an object is valid, and if
it is not valid, why. In general, if you call a method using an object handle that is invalid, the
method will fail and return a value indicating the cause of failure.

The MPI supports multiple motion controllers. Typically, an MPI application first creates a
Control object that corresponds to the desired motion controller. If the application will use
more than one motion controller, it must create a Control object for each motion controller.
The arguments to mpiControlCreate(...) associate a Control object with a specific motion
controller.

A motion controller provides various types of resources, such as axis, digital-to-analog
converter, data recorder, etc. Many of a motion controller’s resource types have multiple
instances. For example, motion controllers provide multiple axes and DACs.

Most MPI objects are associated with a specific instance of a resource on a specific motion
controller. An Axis object, for example, is associated with a single axis on a motion
controller. When creating an MPI object that corresponds to a specific motion controller
resource, the Create method takes an MPIControl handle as its first argument and a number as
the second argument. The number argument identifies the specific motion controller resource
to be used.

Example The number argument of mpiAxisCreate(...) identifies an axis on the
motion controller specified by the MPIControl handle argument.

Object Methods

http://support.motioneng.com/soft/obj_methods.htm (2 of 4) [1/10/2002 1:45:15 PM]

For XMP only Number arguments, for those MPI objects that take them, start with 0
(not 1). For example, on an 8-axis XMP motion controller, valid axis
numbers are 0 - 7.

Some MPI objects maintain a list whose elements are other MPI objects. The Create method
for a list object generally takes a third argument that is a handle to an element object. The
element object then becomes the first element of the list maintained by the list object.
Specifying an element object is optional; if the handle (third argument) has value
MPIHandleVOID, the list object will be created with an empty list.
Example The Motion object maintains an ordered list of Axis objects. This

ordered list of Axis objects defines a motion coordinate system.
The third argument to mpiMotionCreate(...) is an Axis handle
(MPIAxis). If the Axis handle is valid, then the Axis object (that
the handle points to) will be made the first axis in the motion
coordinate system.

All MPI objects provide a method to return the value of each of its Create method arguments.
These methods serve to identify the object. For more detail, see Identity Methods on page
1-47.

mpiObjectDelete(...)
Use the Delete method to delete an object created by the Create method. After an object has
been deleted, the handle to that object can no longer be used.

If a method attempts to use a handle to a deleted object, it returns MPIMessageObject_FREED,
but not always. If the memory originally allocated for the deleted object is subsequently
allocated for a different purpose, then the method will not return MPIMessageObject_FREED.

Your application must ensure that handles to deleted objects are no longer used. After an object
is deleted, your application should ensure that the handle to that object is set to
MPIHandleVOID. After that, any calls to methods using this handle will return
MPIMessageHANDLE_INVALID.

When your application exits, it should call Delete methods for all objects that have been created
by your application. We recommend that your application delete objects in the reverse order in
which they were created. Regardless, the Control object should be the last object deleted. The
MPI does not provide the ability to automatically delete all of the objects that have been
created.

Alternatively, to delete objects, your application may use the C library function atexit(...),
which guarantees that the objects will be deleted even if the application terminates abnormally.

Object Methods

http://support.motioneng.com/soft/obj_methods.htm (3 of 4) [1/10/2002 1:45:15 PM]

mpiObjectValidate(...)
Use the Validate method to “validate” an object created by the Create method. Your
application should always call the Validate method immediately after calling the Create
method. Afterwards, the Validate method can additionally be called at any time in an
application.

If the object is valid, the Validate method will return MPIMessageOK. If the handle passed to
the Validate method has value MPIHandleVOID, the Validate method returns
MPIMessageHANDLE_INVALID. If a method attempts to use a handle to a deleted object,
the method returns MPIMessageObject_FREED. (Also see the previous discussion in
mpiObjectDelete(...)).

Other possible return values are declared in the message header file(MPI\include\message.h)
and in the object’s header file (MPI\include\object.h).

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

Object Methods

http://support.motioneng.com/soft/obj_methods.htm (4 of 4) [1/10/2002 1:45:15 PM]

Configuration Methods

Introduction | mpiObjectConfig{} Structure | mpiObjectConfigGet(...) / mpiObjectConfigSet(...)
mpiObjectFlashConfigGet(...) / mpiObjectFlashConfigSet(...)

Introduction
An object’s configuration is static information that may be read and written, and an object
retains its configuration until an application changes it. To configure an MPI object, you use a
Config structure that is specific to each object.

To configure an MPI object, get the current Config from the motion controller by calling the
ConfigGet method. Modify the Config structure as desired, and then send it back to the
motion controller by calling the ConfigSet method.

If a motion controller has flash memory, you can configure that flash memory using the same
Config structure. The MPI implementation handles all of the details for flash memory
support; all your application needs is a handle to a flash memory object. If a motion controller
does not have flash memory, the flash configuration methods will return
MPIMessageUNSUPPORTED.

MPIObjectConfig{} Structure
An object’s configuration structure contains all of the configurable items for that object. To
configure an object, your application must declare a variable of type MPIObjectConfig{}.
Note that some Config structures are very large, so if you declare a Config structure on a
small stack, your application might encounter problems. A pointer to a Config structure is
passed to the Config methods.

The MPI Config structures should be able to support generic object configurations for a
variety of motion controllers. However, the MPI also provides you with a way to perform
configuration unique to a particular motion controller. In addition to the MPIObjectConfig{}
structure, MPI Config methods can also use an external configuration structure that is defined
by the implementation.

For XMP only The external configuration structures are of type
MEIObjectConfig{}.

Example The MEIAxisConfig{} structure contains XMP-specific
configuration parameters that extend the configuration available
in MPIAxisConfig{}.

Configuration Methods

Root Method .

ConfigGet mpiObjectConfigGet(...) Fill configuration structures with
current motion controller
configuration

ConfigSet mpiObjectConfigSet(...) Change current motion controller
configuration

Configuration Methods

http://support.motioneng.com/soft/cf_methods.htm (1 of 3) [1/10/2002 1:45:18 PM]

FlashConfigGet

FlashConfigSet

mpiObjectFlashConfigGet(...)

mpiObjectFlashConfigSet(...)

Fill configuration structures with
current motion controller Flash
configuration

Change current motion controller
Flash configuration

mpiObjectConfigGet(...) / mpiObjectConfigSet(...)

The mpiObjectConfig() structure is meant to illustrate how objects are configured. Please
swap the object you are interested in for the the object to configure. For example,
mpiObjectConfigSet() shows the naming convention that mpiAxisConfigGet() follows.Both
ConfigGet and ConfigSet take three arguments:

the first argument is the object handle (MPIObject)❍

the second argument is a pointer to an MPIObjectConfig{} structure
(MPIObjectConfig *)

❍

the third argument is a pointer to an external implementation-defined
configuration structure (void *).The third argument may also be NULL

❍

For XMP only The external argument is a pointer to an XMP-specific
configuration structure of type MEIObjectConfig{}.

Use the Get method to fill the configuration structures with the current motion controller
configuration for the object.
Use the Set method to change the current motion controller configuration for the object. (The
Set method uses the configuration structures to do that.)

mpiObjectFlashConfigGet(...) / mpiObjectFlashConfigSet(...)
The FlashConfigGet and FlashConfigSet methods take four arguments:

The first argument is the object handle (MPIObject)❍

The second argument is an implementation-specific handle to Flash memory
(void *).

❍

The second argument can also be NULL.❍

The third argument is a pointer to an MPIObjectConfig{} structure
(MPIObjectConfig *)

❍

The fourth argument is a pointer to an external implementation-defined
configuration structure (void *). The fourth argument can also be NULL.

❍

For XMP only The flash handle is of type MEIFlash (second argument); the
external argument (fourth argument) is a pointer to a
configuration structure of type MEIObjectConfig{}.

Configuration Methods

http://support.motioneng.com/soft/cf_methods.htm (2 of 3) [1/10/2002 1:45:18 PM]

Use the Get method to fill the configuration structures with the current motion controller
Flash configuration for the object.
Use the Set method to change the current motion controller Flash configuration for the object.
(The Set method uses the configuration structures to do that.)

The flash configuration is in effect after system start-up and also after resetting the motion
controller (by calling the mpiControlReset(...) method).

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

Configuration Methods

http://support.motioneng.com/soft/cf_methods.htm (3 of 3) [1/10/2002 1:45:18 PM]

Memory Methods

Introduction | Accessing Memory Methods | Control Object Memory Methods
mpiObjectMemory(...) | mpiObjectMemoryGet(...) / Set(...)

Introduction
You use Memory methods to access a motion controller’s RAM. The MPI imposes no
structure on motion controller RAM, so the use of memory methods requires
implementation-specific knowledge of the motion controller’s memory map.

For MEI/XMP only The memory map is defined in the xmp.h header file. All
accessible memory is defined b#eeeeFFy the MEIXmpData{}
and MEIXmpBufferData{}structures.

Each object has its own memory methods; only the memory directly associated with the
specific object can be accessed using that object’s Memory methods.

Example An Axis object created with axis number 0 may only access
memory associated with Axis 0.

Accessing Memory Methods
Memory access via these methods is thread-safe; only one thread at a time can read or
write the portion of memory associated with the object. The Get/Set methods will
bounds-check the memory address to be accessed, and return an error if the address is not
associated with the object.

Control Object Memory Methods
The Control object memory methods are an exception. Using the ControlMemory
methods, an application may access all memory on the motion controller at any time,
without constraint. The ControlMemory methods are not thread-safe. Memory methods for
the other objects are generally implemented by locking the section of memory associated
with the object, and then calling a ControlMemory method.

It is possible to write a motion application using only a Control object. After creating and
initializing the Control object, the address of motion controller memory can be obtained,
and you can use the ControlMemoryGet/Set methods to access that memory.

Depending on the type of Control object created, an application can directly access the
motion controller memory without using the ControlMemoryGet/Set methods. Such an
application would bypass the rest of the MPI library and must implement its own thread
safety, as well as deal with how the motion controller firmware operates.

Memory Methods

http://support.motioneng.com/soft/mem_methods.htm (1 of 3) [1/10/2002 1:45:22 PM]

Method .

mpiObjectMemory(...)
mpiObjectMemoryGet(...)
mpiObjectMemorySet(...)

Return host address of object in memory Read
motion controller memory
Write motion controller memory

mpiObjectMemory(...)
The mpiObjectMemory(...) method returns a host address that maps to the section of
motion controller memory associated with the object. mpiObjectMemory(...) uses 2
arguments: the object handle, and an output argument of type void **. If a call to
mpiObjectMemory(...) succeeds, the location pointed to by the output argument is set to the
host address.

mpiObjectMemoryGet(...) / mpiObjectMemorySet(...)

These methods read (get) and write (set) motion controller memory. They take 4 arguments:

the object handle❍

a destination address of type void *❍

a source address of type void *❍

and a length in bytes❍

The Get method’s destination address points to host memory, while the source address points to
motion controller memory (based on the address returned by the Memory method for the object).
The Set method is the opposite. The Set method’s destination address points to motion controller
memory and the source address points to host memory.

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

Memory Methods

http://support.motioneng.com/soft/mem_methods.htm (2 of 3) [1/10/2002 1:45:22 PM]

Memory Methods

http://support.motioneng.com/soft/mem_methods.htm (3 of 3) [1/10/2002 1:45:22 PM]

Status Methods

Introduction | MPIStatus{...} Structure | MPIObjectStatus{...} Structure

Introduction

Status is read-only information that changes dynamically. Many objects define a Status
structure and a method that uses that structure to return status to the application.

MPIStatus{...} Structure
The MPIStatus{...} structure contains information about the state of an axis or an entire
motion. The Axis object and the Motion object return status using the MPIStatus{...}
structure. Because the MPIStatus{...} structure is shared among objects, it is defined in
the mpidef.h header file instead of being defined in an object header file.

For objects that involve more than 1 axis, the status returned by the motion object
indicates the “sum” of the status conditions of the axes in its coordinate system. In
general, the status structure gives an indication of whether an axis is moving or idle. The
axis structure also indicates whether the axis is idle because of an error.

For MEI/XMP only The filter object (whose handle is of type MEIFilter) also
returns status in MPIStatus{...}.

MPIObjectStatus{...} Structure

Objects that are not Axis and Motion objects return status using an object-specific Status
structure defined in the object’s header file.

mpiObjectStatus(...)
For Axis and Motion objects, mpiObjectStatus(...) returns the object’s status using the
object’s handle and a pointer to an MPIStatus{...} structure. For objects that are not Axis
or Motion objects, mpiObjectStatus(...) returns the object’s status using the object’s
handle and a pointer to an MPIObjectStatus{...} structure.

Status Methods

http://support.motioneng.com/soft/sts_methods.htm (1 of 2) [1/10/2002 1:45:25 PM]

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

Status Methods

http://support.motioneng.com/soft/sts_methods.htm (2 of 2) [1/10/2002 1:45:25 PM]

Event Notification Methods

Introduction | mpiObjectEventNotifyGet(...) | mpiObjectEventNotifySet(...)
mpiObjectEventNotifyReset(...) | Notification Process

Introduction

The MPI EventMgr is responsible for the collection and distribution of host notifications of
firmware events. An application often needs to be notified of events that take place on the
motion controller. Events include normal motion completion, motion limits being reached,
hardware failure, etc. The EventNotify methods enable your application to request host
notification of certain types of events, while ignoring other types of events. Some events are
latched, in which case your application must reset the event before the event can be
triggered again.

Method Description

mpiObjectEventNotifyGet(...) Get event mask used for host notification

mpiObjectEventNotifySet(...) Set event mask to request host notification of events

mpiObjectEventNotifyReset(...) Reset event notification

mpiObjectEventNotifyGet(...)
Use EventNotifyGet to return an MPIEventMask, which has a bit set for each type of event
that host notification has been requested for, by the object.

Event Notification Methods

http://support.motioneng.com/soft/evtnfn_methods.htm (1 of 4) [1/10/2002 1:45:32 PM]

mpiObjectEventNotifySet(...)
Use EventNotifySet to request host notification for each type of event specified in the
MPIEventMask argument.

mpiObjectEventNotifyReset(...)
Use EventNotifyReset to reset each type of event specified in the MPIEventMask argument.

Notification Process
Events [that are requested by mpiObjectEventNotifySet(...)] move up through the firmware to the
EventMgr.

Event Notification Methods

http://support.motioneng.com/soft/evtnfn_methods.htm (2 of 4) [1/10/2002 1:45:32 PM]

To collect events, the EventMgr either polls the firmware (using mpiEventMgrService(...)) or is
interrupted by the firmware. The EventMgr passes each event to its list of Notify objects, who further
qualify events based on the event type and the source of the event, and generate signals and otherwise
notify the host application of event occurrences.

Event Notification Methods

http://support.motioneng.com/soft/evtnfn_methods.htm (3 of 4) [1/10/2002 1:45:32 PM]

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

Event Notification Methods

http://support.motioneng.com/soft/evtnfn_methods.htm (4 of 4) [1/10/2002 1:45:32 PM]

List Methods

Introduction | List | Element | Array Methods
List Expansion Methods | List Contraction Methods | List Traversal Methods

Introduction
Several MPI objects maintain a list whose elements are other MPI objects.

Example A Motion object maintains a list of Axis objects.
An EventMgr object maintains 2 lists: a list of Control objects and a
list of Notify objects.

The MPI declares standard list manipulation methods for all such objects. The MPI does
not specify how lists are to be implemented.

List
A list is an ordered sequence of elements. Generally, the elements of a list are objects of
the same type, but this is not required. A list that contains no elements is empty. A list
may be traversed either forwards or backwards from any element that is a member of the
list. List manipulation methods are declared for the object that maintains the list.

Element
An element is a member of a list. An element is generally an object. An element is added to or
removed from a list using list manipulation methods (declared by the object that maintains the
list).

List Methods

http://support.motioneng.com/soft/lis_methods.htm (1 of 5) [1/10/2002 1:45:36 PM]

Grouping List Action Method .

Array Methods ListGet ListSet . .

List Expansion Append
Insert . .

List Contraction Remove . .

List Traversal

Count
First
Index
Last
Next
Previous

mpiListElement(...)
mpiListElementCount(...)
mpiListElementFirst(...)
mpiListElementIndex(...)
mpiListElementLast(...)
mpiListElementNext(...)
mpiListElementPrevious(...)

Return handle of indexth element
Return number of elements in list
Return handle to first element in list
Return index number of element in
list
Return handle to last element in list
Return handle to next element in list
Return handle to previous element in
list

Array Methods
You use Array methods to manipulate lists. Array methods use an element count and an
application-resident array of elements. These methods provide a convenient way of
dealing with a list as a whole. Note that if you do use array methods for list
manipulation, you can also use other list manipulation methods as well.

mpiListElementListGet(MPIList list, long *count, MPIElement *Element)
The ListGet method returns the list (maintained by List) as an array of object handles of
type MPIElement. Upon successful return of the ListGet method, the contents of the
location pointed to by count will be set to the number of elements in the list, or set to
zero (if the list is empty). Your application must also define the object handle array
pointed to by Element, and the array must be large enough to hold the current number of
list elements.

mpiListElementListSet(MPIList list, long count, MPIElement *Element)
The ListSet method sets the list (maintained by List) from an array of object handles of
type MPIElement. Upon successful return of the ListSet method, the list will contain
count elements. Your application must also define the object handle array pointed to by
Element, and the array must contain at least count list elements. After using the ListSet
method, any existing list will be completely replaced by the new list. To make an
existing list empty, call the ListSet method with a count of 0 and Element set to NULL.

List Methods

http://support.motioneng.com/soft/lis_methods.htm (2 of 5) [1/10/2002 1:45:36 PM]

List Expansion Methods
A list can be expanded by inserting an element at any point, either as the first element of
the list, after a specific list element, or as the last element of the list. Lists generally
check and verify that an element to be inserted is not already a list element. Other
list-specific checks may be made before insertion as well.

mpiListElementAppend(MPIList list, MEIElement Element)
The Append method appends an object (whose handle is Element) to the list maintained
by List, making it the last element of the list.

mpiListElementInsert(MPIList list, MEIElement before, MEIElement insert)
The Insert method inserts an object (whose handle is insert) into the list maintained by
List, placing it after the list element whose handle is before. If before is
MPIHandleVOID, insert becomes the first element of the list.

List Contraction Methods
A list can be contracted (shortened) by removing a list element. Lists check and verify
that the element to be removed is actually a list element.

mpiListElementRemove(MPIList list, MEIElement Element)
The Remove method removes an object (whose handle is Element) from the list
maintained by List.

List Traversal Methods

To traverse a list means to be able to move through all of the elements on a list. It can
also involve determining the number of list elements, searching for a particular list
element, finding the index of a list element, and more.

MPIElement mpiListElement(MPIList list, long index)

Return Values .

handle of the indexth list element of the list maintained by List

MPIHandleVOID
if index is less than zero
if index is greater-than-or-equal-to the number of list elements

List Methods

http://support.motioneng.com/soft/lis_methods.htm (3 of 5) [1/10/2002 1:45:36 PM]

mpiListElementCount(MPIList list)

Return Values .

number of list
elements

on the list maintained by List

-1 if list is invalid

MPIElement mpiListElementFirst(MPIList list)

Return Values .

handle to the first list element of the list maintained by List

MPIHandleVOID
if list is empty or is not valid
if list is not valid

mpiListElementIndex(MPIList list, MPIElement Element)

Return Values .

index of Element in the list maintained by List

-1
if list is empty or not valid
if Element is not a list element of the list maintained by List

MPIElement mpiListElementLast(MPIList list)

Return Values .

handle to the last list element of the list maintained by List

MPIHandleVOID
if list is empty
if list is not valid

MPIElement mpiListElementNext(MPIList list, MPIElement Element)

Return Values .

handle
to the list element immediately after Element in the list
maintained by List

MPIHandleVOID
if list is not valid
if Element is not a list element
if Element is the last list element of the list maintained by List

List Methods

http://support.motioneng.com/soft/lis_methods.htm (4 of 5) [1/10/2002 1:45:36 PM]

MPIElement mpiListElementPrevious(MPIList list, MPIElement Element)

Return Values .

handle
to the list element immediately before Element in the list
maintained by list

MPIHandleVOID
if list is not valid
if Element is not a list element
if Element is the first list element of the list maintained by List

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

List Methods

http://support.motioneng.com/soft/lis_methods.htm (5 of 5) [1/10/2002 1:45:36 PM]

Identity Methods

 Identity methods are used to identify an object, by providing the value of each of the arguments
passed to the Create method to create that object. An identity method exists for each Create
method argument, and typically is named by that argument.

Identity methods generally have a second output argument that is a pointer to the Create method
argument to be returned; the return value of the method will indicate success or failure (as
usual). However, identity methods that return an object handle do so directly rather than using
an output argument.

Example The mpiAxisCreate(...) method takes 2 arguments; an MPIControl handle and
an axis number. Therefore, the Axis module declares 2 identity methods:
mpiAxisControl(...) and mpiAxisNumber(...).

The mpiAxisControl(...) method returns the MPIControl handle with which
the axis object was created. The mpiAxisNumber(...) method returns a value
that indicates success or failure; if the value indicates success, the second
argument points to a location that will be set to the axis number.

Object Methods | Configuration Methods | Memory Methods | Status Methods
| Event Notification Methods | List Methods | Identity Methods |

Return to Software: Method's Main Menu

Identity Methods

http://support.motioneng.com/soft/identy_methods.htm [1/10/2002 1:45:39 PM]

http://support.motioneng.com/soft/search_method.htm

	motioneng.com
	Table of Contents for Methods Breakdown
	Object Methods
	Configuration Methods
	Memory Methods
	Status Methods
	Event Notification Methods
	List Methods
	Identity Methods

