
Control Objects
Introduction

 A Control object manages a motion controller device. The device is typically a single
board residing in a PC or an embedded system. A control object can read and write
device memory through one of a variety of methods: I/O port, memory mapped or device
driver.

For the case where the application and the motion controller device exist on two
physically separate platforms connected by a LAN or serial line, the application creates a
client control object which communicates via remote procedure calls with a server.

Unlike the methods of all other objects in the MPI, Control object methods are not
thread-safe.

Are you using TCP/IP and Sockets? If yes, click here.

Methods
Create, Delete, Validate Methods
 mpiControlCreate Create Control object

 mpiControlDelete Delete Control object

 mpiControlValidate Validate Control object

Configuration and Information Methods
 mpiControlAddress Get original address of Control object (when it was created)

 mpiControlConfigGet Get Control config

 mpiControlConfigSet Set Control config

 meiControlExtMemAvail

 mpiControlFlashConfigGet Get Control flash config

 mpiControlFlashConfigSet Set Control flash config

 meiControlGateGet Get the closed state (TRUE or FALSE)

 meiControlGateSet Set the closed state (TRUE or FALSE)

 meiControlSampleCounter
 meiControlSamplestoSeconds Converts samples to seconds

 meiControlSecondstoSamples Converts seconds to samples

 mpiControlType Get type of Control object (used to create Command object)

 meiControlVersionGet Read the version of XMP firmware

 meiControlVersionSet Write the version of XMP firmware

Control Objects

http://support.motioneng.com/soft/control/cnl_out.htm (1 of 2) [3/12/2002 8:58:25 AM]

Memory Methods
 mpiControlMemory Get address of Control memory

 mpiControlMemoryAlloc Allocate bytes of firmware memory

 mpiControlMemoryCount Get number of bytes available in firmware

 mpiControlMemoryFree Free bytes of firmware memory

 mpiControlMemoryGet Copy count bytes of Control memory to application memory

 mpiControlMemorySet Copy count bytes of application memory to Control memory

Action Methods
 mpiControlCycleWait Wait for Control to execute count cycles

 mpiControlInit Initialize Control object

 mpiControlInterruptEnable Enable interrupts to Control object

 mpiControlInterruptWait Wait for controller interrupt

 mpiControlInterruptWake Wake all threads waiting for controller interrupt

 mpiControlReset Reset controller hardware

 meiControlSampleWait Specify how many samples the host waits for, while the XMP executes

Relational Methods
 meiControlPlatform

Data Types
 MPIControlAddress
 MPIControlConfig / MEIControlConfig
 MPIControlIo
 MEIControlInput
 MPIControlMessage / MEIControlMessage
 MEIControlOutput
 MPIControlType
 MEIControlVersion

Control Objects

http://support.motioneng.com/soft/control/cnl_out.htm (2 of 2) [3/12/2002 9:05:59 AM]

mpiControlCreate

Declaration const MPIControl mpiControlCreate(MPIControlType type,
 MPIControlAddress *address)

Required Header stdmpi.h

Description ControlCreate creates a Control object of the specified type and type-specific
address. ControlCreate is the equivalent of a C++ constructor.

The type parameter determines the form of the address parameter:

If the "type" parameter is Then the form of the "address" parameter is

MPIControlTypeDEFAULT implementation-specific

MPIControlTypeMAPPED MPIControlAddress.mapped

MPIControlTypeIOPORT MPIControlAddress.ioPort

MPIControlTypeDEVICE MPIControlAddress.device

MPIControlTypeCLIENT MPIControlAddress.client

Note:This constructor does not reset or initialize the motion control device.

About MPIControlTypes:

If MPIControlType
is

And
MPIControlAddress is

Then the
Board Number is

And the
“address” parameter
to be used is

DEFAULT1 Null
address

0
address.number

default address parameter
default address parameter

DEVICE2
Null
address

0
address.number

default device driver
address.type.device (if
address.type.device is Null, then default
device driver)

A valid type
address address.number N/A

(if address parameter is not defined or
Null, then an error is generated)

If the type is DEFAULT, then the address structure (if supplied) is referenced only for the board
number. Note that even if the default type is DEVICE, the default device driver will be used and
address.type.device will not be used.

1.

If the type is explicitly DEVICE, and the address is provided, then address.number will be used. If
address.type.device is NULL, then the default device driver will be used. If address.type.device is not
NULL, then the specified driver (DEVICE) will be used.

2.

mpiControlCreate

http://support.motioneng.com/soft/control/Method/create1.htm (1 of 2) [3/12/2002 9:00:05 AM]

Sample Code

In general, if the caller specifies an explicit type (i.e., not DEFAULT), then the caller must
completely fill out the address.type structure.

A simple case that will work for almost anyone who wants to use board #0:

mpiControlCreate(MPIControlTypeDEFAULT, NULL);

A simple case where board #1 is desired is:

 {
 MPIControlAddress address;
 address.number = 1;
 mpiControlCreate(MPIControlTypeDEFAULT, &address);
 }

Since the default MPIControlType = MPIControlTypeDEVICE, the address may be on the
stack with garbage for the device driver name. This isn’t a problem, however, because
the board number is the only field in address that will be used when the caller specifies
the DEFAULT MPIControlType.

Return Values
handle to a Control object

MPIHandleVOID if the object could not be created

See Also MPIControl | MPIControlAddress | MPIControlType | mpiControlValidate
mpiControlInit | mpiControlDelete

mpiControlCreate

http://support.motioneng.com/soft/control/Method/create1.htm (2 of 2) [3/12/2002 9:00:05 AM]

mpiControlDelete

Declaration long mpiControlDelete(MPIControl control)

Required Header stdmpi.h

Description
ControlDelete deletes a control object and invalidates its handle. ControlDelete is
the equivalent of a C++ destructor.

Return Values
MPIMessageOK if ControlDelete successfully deletes a Control object and invalidates its handle

See Also mpiControlCreate | mpiControlValidate

mpiControlDelete

http://support.motioneng.com/soft/control/Method/delete1.htm [3/12/2002 9:00:08 AM]

mpiControlValidate

Declaration long mpiControlValidate(MPIControl control)

Required Header stdmpi.h

Description ControlValidate validates the control object and its handle.

Return Values
MPIMessageOK if Control is a handle to a valid object.

See Also mpiControlCreate | mpiControlDelete

mpiControlValidate

http://support.motioneng.com/soft/control/Method/valid1.htm [3/12/2002 9:00:10 AM]

mpiControlAddress

Declaration long mpiControlAddress(MPIControl control,
 MPIControlAddress *address)

Required Header stdmpi.h

Description When a Control object (control) is created, an address is used. ControlAddress writes
this address to the contents of address.

Return Values

MPIMessageOK if ControlAddress successfully writes the address (used when control was created)
to the contents of address

See Also

mpiControlAddress

http://support.motioneng.com/soft/control/Method/ads1.htm [3/12/2002 9:00:12 AM]

mpiControlConfigGet

Declaration long mpiControlConfigGet(MPIControl control,
 MPIControlConfig *config,
 void *external)

Required Header stdmpi.h

Description ControlConfigGet gets the configuration of a Control object (control) and writes it
into the structure pointed to by config, and also writes it into the
implementation-specific structure pointed to by external (if external is not NULL).

The configuration information in external is in addition to the configuration
information in config, i.e, the configuration information in config and in external is
not the same information. Note that config or external can be NULL (but not both
NULL).

XMP Only external either points to a structure of type MEIControlConfig{} or is NULL.

Return Values

MPIMessageOK if ControlConfigGet successfully gets the control configuration and writes it in the
structure(s)

See Also mpiControlConfigSet | MEIControlConfig |
Special Note on Dynamic Allocation of External Memory Buffers.

mpiControlConfigGet

http://support.motioneng.com/soft/control/Method/cfget1.htm [3/12/2002 9:00:15 AM]

mpiControlConfigSet

Declaration long mpiControlConfigSet(MPIControl control,
 MPIControlConfig *config,
 void *external)

Required Header stdmpi.h

Description ControlConfigSet sets (writes) the Control object’s (control) configuration using data
from the structure pointed to by config, and also using data from the
implementation-specific structure pointed to by external (if external is not NULL).

The configuration information in external is in addition to the configuration
information in config, i.e, the configuration information in config and in external is
not the same information. Note that config or external can be NULL (but not both
NULL).

XMP Only external either points to a structure of type MEIControlConfig{} or is NULL.

Return Values

MPIMessageOK if ControlConfigSet successfully writes the Control object’s configuration using
data from the structure(s)

See Also mpiControlConfigGet | MEIControlConfig |
Special Note on Dynamic Allocation of External Memory Buffers.

mpiControlConfigSet

http://support.motioneng.com/soft/control/Method/cfset1.htm [3/12/2002 9:00:19 AM]

meiControlExtMemAvail

Declaration long meiControlExtMemAvail(MPIControl control,
 long *size)

Required Header stdmei.h

Description ControlExtMemAvail gets the amount of external memory available on an
XMP-Series controller. It puts the number of words (16 bit) in the location pointed to
by size.

 control a handle to the Control object

 *size a pointer to the available memory words returned by the method

Return Values

MPIMessageOK if ControlExtMemAvail successfully gets and writes the available external memory
words into *size

See Also MPIControlConfig

meiControlExtMemAvail

http://support.motioneng.com/soft/control/Method/extmemavl2.htm [3/12/2002 9:00:22 AM]

mpiControlFlashConfigGet

Declaration long mpiControlFlashConfigGet(MPIControl control,
 void *flash,
 MPIControlConfig *config,
 void *external)

Required Header stdmpi.h

Description ControlFlashConfigGet gets the flash configuration of a Control object (control) and
writes it into the structure pointed to by config, and also writes it into the
implementation-specific structure pointed to by external (if external is not NULL).

The Control’s flash configuration information in external is in addition to the
Control’s flash configuration information in config, i.e., the flash configuration
information in config and in external is not the same information. Note that config or
external can be NULL (but not both NULL).

XMP Only
external either points to a structure of type MEIControlConfig{} or is NULL. flash is
either an MEIFlash handle or MPIHandleVOID. If flash is MPIHandleVOID, an MEIFlash
object will be created and deleted internally.

Return Values

MPIMessageOK if ControlFlashConfigGet successfully gets the Control’s flash configuration and
writes it into the structure(s)

See Also MEIFlash | mpiControlFlashConfigSet | | MEIControlConfig

mpiControlFlashConfigGet

http://support.motioneng.com/soft/control/Method/flacfget1.htm [3/12/2002 9:00:25 AM]

http://support.motioneng.com/soft/Flash/fla_out.htm

mpiControlFlashConfigSet

Declaration long mpiControlFlashConfigSet(MPIControl control,
 void *flash,
 MPIControlConfig *config,
 void *external)

Required Header stdmpi.h

Description ControlFlashConfigSet sets (writes) the flash configuration of a Control object
(control), using data from the structure pointed to by config, and also using data from
the implementation-specific structure pointed to by external (if external is not
NULL).

The Control’s flash configuration information in external is in addition to the
Control’s flash configuration information in config, i.e., the flash configuration
information in config and in external is not the same information. Note that config or
external can be NULL (but not both NULL).

XMP Only
external either points to a structure of type MEIControlConfig{} or is NULL. flash is
either an MEIFlash handle or MPIHandleVOID. If flash is MPIHandleVOID, an MEIFlash
object will be created and deleted internally.

Return Values

MPIMessageOK if ControlFlashConfigSet successfully sets (writes) the Control’s flash configuration
using data from the structure(s)

See Also MEIFlash | mpiControlFlashConfigGet | | MEIControlConfig

mpiControlFlashConfigSet

http://support.motioneng.com/soft/control/Method/flacfset1.htm [3/12/2002 9:00:28 AM]

http://support.motioneng.com/soft/Flash/fla_out.htm

meiControlGateGet

Declaration long meiControlGateGet(MPIControl control,
 long gate,
 long *closed)

Required Header stdmei.h

Description ControlGateGet gets the closed state (TRUE or FALSE) from the specified control
gate (0 to 31).

Return Values

MPIMessageOK if ControlGateGet successfully gets (reads) the state from the control gate and puts
it into closed.

See Also meiControlGateSet

meiControlGateGet

http://support.motioneng.com/soft/control/Method/gatget2.htm [3/12/2002 9:00:31 AM]

meiControlGateSet

Declaration long meiControlGateSet(MPIControl control,
 long gate,
 long closed)

Required Header stdmei.h

Description ControlGateSet sets the closed state (TRUE or FALSE) for the specified control gate
(0 to 31).

Return Values
MPIMessageOK if ControlGateSet successfully sets (writes) the closed state into the control gate.

See Also meiControlGateGet

meiControlGateSet

http://support.motioneng.com/soft/control/Method/gatset2.htm [3/12/2002 9:00:33 AM]

meiControlSampleCounter

Declaration long meiControlSampleCounter(MPIControl control,
 long *sampleCounter)

Required Header stdmei.h

Description ControlSampleCounter writes the number of servo cycles (samples) that have
occured since the last sample counter reset/rollover, to the sampleCounter . When the
user resets the controller, the sample counter will also be reset. Since the sample
counter is a long, if the sample counter is 2147483647 it will roll over on the next
servo cycle to -2147483648.

Return Values
MPIMessageOK if the sample counter could be read

See Also meiControlSecondstoSamples | meiControlSamplestoSeconds | meiControlSampleWait

meiControlSampleCounter

http://support.motioneng.com/soft/control/Method/samctr2.htm [3/12/2002 9:00:35 AM]

meiControlSamplesToSeconds

Declaration long meiControlSamplesToSeconds(MPIControl control,
 long samples,
 float *seconds)

Required Header stdmei.h

Description ControlSamplesToSeconds writes to seconds the number of seconds it takes to
process samples number of samples (at the current sample rate). Use this function to
convert samples to seconds.

Return Values
MPIMessageOK if ControlSampleToSeconds successfully converts the samples to seconds.

See Also meiControlSecondstoSamples | meiControlSampleCounter

meiControlSamplestoSeconds

http://support.motioneng.com/soft/control/Method/samtosec2.htm [3/12/2002 9:00:39 AM]

meiControlSecondstoSamples

Declaration long meiControlSecondsToSamples(MPIControl control,
 float seconds,
 long *samples)

Required Header stdmei.h

Description ControlSecondsToSamples writes to samples the number of servo cycles that will
take place in seconds number of seconds (at the current sample rate). Use this function
to convert seconds to samples.

Return Values
MPIMessageOK if ControlSecondsToSamples successfully converts the seconds to samples.

See Also meiControlSamplestoSeconds | meiControlSampleCounter | meiControlSampleWait

meiControlSecondstoSamples

http://support.motioneng.com/soft/control/Method/sectosam2.htm [3/12/2002 9:00:42 AM]

mpiControlType

Declaration long mpiControlType(MPIControl control,
 MPIControlType *type)

Required Header stdmpi.h

Description When a Control object (control) is created, a type is used. ControlType writes this
type to the contents of type.

Return Values

MPIMessageOK if ControlType successfully gets the type (used when control was created) to the
contents of type

See Also

mpiControlType

http://support.motioneng.com/soft/control/Method/ty1.htm [3/12/2002 9:00:45 AM]

meiControlVersionGet

Declaration long meiControlVersionGet(MPIControl control,
 MEIControlVersion *version)

Required Header stdmei.h

Description ControlVersionGet writes the the version numbers of the XMP firmware, hardware,
and the MPI library to the structure pointed to by version.

Return Values

MPIMessageOK if ControlVersionGet successfully writes the the version numbers of the XMP
firmware, hardware, and the MPI library to the location

See Also meiControlVersionSet

meiControlVersionGet

http://support.motioneng.com/soft/control/Method/verget2.htm [3/12/2002 9:00:48 AM]

meiControlVersionSet

Declaration long meiControlVersionSet(MPIControl control,
 MPIControlVersion *version)

Required Header stdmei.h

Description ControlVersionSet sets the version numbers of the XMP firmware, hardware, and the
MPI library using data from the structure pointed to by version.

Normally, the MPI library is compatible only with the XMP firmware for which the
library is specifically built; i.e., only when

version -> mpi.firmware.version == version -> xmp.firmware.version

However, there are times when it is desirable to have the MPI library ignore
incompatible firmware and continue to operate. As an example, the flash utility
instructs the MPI library to ignore firmware incompatibility when new firmware is
being loaded. Of course, this new firmware should also be compatible with the MPI
library. In such cases, the version -> xmp.firmware structure will be copied into
control.

Return Values

MPIMessageOK if ControlVersionSet successfully sets the version numbers of the XMP firmware,
hardware, and the MPI library using data from the structure

See Also meiControlVersionGet

meiControlVersionSet

http://support.motioneng.com/soft/control/Method/verset2.htm [3/12/2002 9:00:50 AM]

mpiControlMemory

Declaration long mpiControlMemory(MPIControl control,
 void **memory,
 void **external)

Required Header stdmpi.h

Description ControlMemory sets (writes) an address (used to access a Control object’s memory)
to the contents of memory.

If external is not NULL, the contents of external are set to an implementation-specific
address that typically points to a different section or type of Control memory other
than memory (e.g., to external or off-chip memory). These addresses (or addresses
calculated from them) are passed as the src argument to mpiControlMemoryGet(...)
and the dst argument to mpiControlMemorySet(...).

Return Values

MPIMessageOK
if ControlMemory successfully writes the address(es) (used to access Control
memory, and optionally to access another section of Control memory) to the
contents of memory (and to external, if external is not Null)

See Also mpiControlMemoryGet | mpiControlMemorySet | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemoryFree

mpiControlMemory

http://support.motioneng.com/soft/control/Method/mem1.htm [3/12/2002 9:00:56 AM]

mpiControlMemoryAlloc

Declaration long mpiControlMemoryAlloc(MPIControl control,
 MPIControlMemoryType type,
 long count,
 void **memory)

Required Header stdmpi.h

Description ControlMemoryAlloc allocates count bytes of firmware memory [of type type on a
Control object (control)] and writes the host address (of the allocated firmware
memory) to the location pointed to by memory.

Return Values

MPIMessageOK if ControlMemoryAlloc successfully allocates firmware memory and writes the host
address of that firmware memory to memory

See Also mpiControlMemoryGet | mpiControlMemorySet | mpiControlMemory |
mpiControlMemoryCount | mpiControlMemoryFree

mpiControlMemoryAlloc

http://support.motioneng.com/soft/control/Method/memalc1.htm [3/12/2002 9:07:44 AM]

mpiControlMemoryCount

Declaration long mpiControlMemoryCount(MPIControl control,
 MPIControlMemoryType type,
 long *count)

Required Header control.h

Description ControlMemoryCount writes the number of bytes of firmware memory [on a
Control object (control, of type type) that are available to be allocated] to the location
pointed to by count.

Return Values

MPIMessageOK if ControlMemoryCount successfully writes the number of bytes of firmware
memory (that are available to be allocated) to count.

See Also

mpiControlMemoryCount

http://support.motioneng.com/soft/control/Method/memcnt1.htm [3/12/2002 9:07:48 AM]

mpiControlMemoryFree

Declaration long mpiControlMemoryFree(MPIControl control,
 MPIControlMemoryType type,
 long count,
 void *memory)

Required Header stdmpi.h

Description ControlMemoryFree frees count bytes of firmware memory on a Control object
(control, of type type) starting at host address memory.

Return Values

MPIMessageOK if ControlMemoryAlloc successfully frees count bytes of firmware memory on a
Control object

See Also mpiControlMemoryGet | mpiControlMemorySet | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemory

mpiControlMemoryFree

http://support.motioneng.com/soft/control/Method/memfre1.htm [3/12/2002 9:07:51 AM]

mpiControlMemoryGet

Declaration long mpiControlMemoryGet(MPIControl control,
 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description ControlMemoryGet gets count bytes of control memory (starting at address src) and
puts (writes) them in application memory (starting at address dst).

Return Values

MPIMessageOK if ControlMemoryGet successfully gets count bytes of control memory and puts
(writes) them in application memory

See Also mpiControlMemorySet | mpiControlMemory | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemoryFree

mpiControlMemoryGet

http://support.motioneng.com/soft/control/Method/memget1.htm [3/12/2002 9:07:55 AM]

mpiControlMemorySet

Declaration long mpiControlMemorySet(MPIControl control,
 void *dst,
 void *src,
 long count)

Required Header stdmpi.h

Description ControlMemorySet sets (writes) count bytes of application memory (starting at
address src) to control memory (starting at address dst).

Return Values

MPIMessageOK if ControlMemorySet successfully sets (writes) count bytes of application memory
to control memory

See Also mpiControlMemoryGet | mpiControlMemory | mpiControlMemoryAlloc |
mpiControlMemoryCount | mpiControlMemoryFree

mpiControlMemorySet

http://support.motioneng.com/soft/control/Method/memset1.htm [3/12/2002 9:07:58 AM]

meiControlCycleWait

Declaration long meiControlCycleWait(MPIControl control,
 long count)

Required Header stdmei.h

Description ControlCycleWait waits for the XMP motion controller (control) to execute for
count background cycles. The host will continuously verify that the XMP firmware is
operational, and the host will give up its time slice as it waits (for the controller to
execute the background cycles).

Return Values
MPIMessageOK after the motion controller successfully executes for count cycles

See Also

meiControlCycleWait

http://support.motioneng.com/soft/control/Method/cycwt2.htm [3/12/2002 9:08:01 AM]

mpiControlInit

Declaration long mpiControlInit(MPIControl control)

Required Header stdmpi.h

Description ControlInit initializes the motion control device control. ControlInit must be called at
least once after a control object has been created and before any other mpiControl
methods are called [with the exception of mpiControlDelete(...)].

Return Values
MPIMessageOK if ControlInit successfully initializes the motion control device control

See Also mpiControlDelete

mpiControlInit

http://support.motioneng.com/soft/control/Method/init1.htm [3/12/2002 9:08:05 AM]

mpiControlInterruptEnable

Declaration long mpiControlInterruptEnable(MPIControl control,
 long enable)

Required Header stdmpi.h

Description If “enable” is TRUE, then ControlInterruptEnable enables interrupts from the
motion controller.

If "enable" is FALSE, then ControlInterruptEnable disables interrupts from the
motion controller.

Return Values

MPIMessageOK if ControlInterruptEnable successfully enables (or disables) interrupts from the
motion controller

See Also mpiControlInteruptWait | mpiControlInteruptWake

mpiControlInterruptEnable

http://support.motioneng.com/soft/control/Method/intenb1.htm [3/12/2002 9:08:09 AM]

mpiControlInterruptWait

Declaration long mpiControlInterruptWait(MPIControl control,
 long *interrupted,
 MPIWait timeout)

Required Header stdmpi.h

Description ControlInterruptWait waits for an interrupt from the motion controller if interrupts
are enabled.

After the ControlInterruptWait method returns, if the location pointed to by
interrupted contains TRUE, then an interrupt has occurred.

After the ControlInterruptWait method returns, if the location pointed to by
interrupted contains FALSE, then no interrupt has occurred, and the return of
ControlInterruptWait was caused either by a call to mpiControlInterruptWake(...)
or by a timeout that has occurred.

If timeout is MPIWaitFOREVER (-1), then ControlInterruptWait will wait forever
for an interrupt
If timeout is MPIWaitPOLL (0), then ControlInterruptWait will return immediately
If timeout is a value (not 0 or -1), then ControlInterruptWait will wait for an interrupt
for timeout milliseconds

Return Values
MPIMessageOK if ControlInterruptWait waits for an interrupt from the motion controller

See Also mpiControlInterruptWake | mpiControlInteruptEnable

mpiControlInterruptWait

http://support.motioneng.com/soft/control/Method/intwt1.htm [3/12/2002 9:08:16 AM]

http://support.motioneng.com/soft/Global/Datatype/wt1.htm

mpiControlInterruptWake

Declaration long mpiControlInterruptWake(MPIControl control)

Required Header stdmpi.h

Description ControlInterruptWake wakes all threads waiting for an interrupt from the motion
controller control [as a result of a call to mpiControlInterruptWait(...)]. The waking
thread(s) will return from the call with no interrupt indicated.

Return Values

MPIMessageOK if ControlInterruptWake successfully wakes all threads waiting for an interrupt
from the motion controller

See Also mpiControlInterruptWait | mpiControlInteruptEnable

mpiControlInterruptWake

http://support.motioneng.com/soft/control/Method/intwk1.htm [3/12/2002 9:08:19 AM]

mpiControlReset

Declaration long mpiControlReset(MPIControl control)

Required Header stdmpi.h

Description ControlReset resets the motion controller (control) board.

Return Values
MPIMessageOK if ControlReset successfully resets the motion controller board

See Also

mpiControlReset

http://support.motioneng.com/soft/control/Method/rst1.htm [3/12/2002 9:08:24 AM]

meiControlSampleWait

Declaration long meiControlSampleWait(MPIControl control,
 long count)

Required Header stdmpi.h

Description ControlSampleWait waits for count samples while the XMP motion controller
(associated with control) executes. While the host waits, the host gives up its time
slice and continuously verifies that the XMP firmware is operational.

Return Values

MPIMessageOK if ControlSampleWait successfully waits for count samples while the XMP motion
controller executes

See Also meiControlSamplestoSeconds | meiControlSecondstoSamples | meiControlSampleCounter |

meiControlSampleWait

http://support.motioneng.com/soft/control/Method/samwt2.htm [3/12/2002 9:08:27 AM]

meiControlPlatform

Declaration MEIPlatform meiControlPlatform(MPIControl control)

Required Header stdmei.h

Description ControlPlatform returns a handle to the Platform object with which the control is
associated.

 control a handle to the Control object

Return Values
MPIPlatform handle to a Platform object

MPIHandleVOID if control is invalid

See Also mpiControlCreate

meiControlPlatform

http://support.motioneng.com/soft/control/Method/pfm2.htm [3/12/2002 9:08:32 AM]

http://support.motioneng.com/soft/Platform/pfm_out.htm

MPIControlAddress
MPIControlAddress
 typedef struct MPIControlAddress {

 long number; /* controller number */

 union {
 void *mapped; /* memory address */
 unsigned long ioPort; /* I/O port number */
 char *device; /* device driver name */
 struct {
 char *name; /* image file name */
 MPIControlFileType type; /* image file type */
 } file;
 struct {
 char *server; /* IP address: host.domain.com */
 long port; /* socket number */
 } client;
 } type;
} MPIControlAddress;

Description ControlAddress is a structure that specifies the location of the controller that to be
accessed when mpiControlCreate() is called. Please refer to the documentation for
mpiControlCreate() to see how to use this structure.

 number The controller number in the computer

 type A union that holds information about controllers on non-local computers.

See Also

 MPIControl | MPIControlType | mpiControlCreate

MPIControlAddress

http://support.motioneng.com/soft/control/DataType/ads1.htm [3/12/2002 9:08:35 AM]

MPIControlConfig / MEIControlConfig
MPIControlConfig

 typedef struct MPIControlConfig {
 long adcCount;
 long axisCount;
 long captureCount;
 long compareCount;
 long cmdDacCount;
 long auxDacCount;
 long filterCount;
 long motionCount;
 long motorCount;
 long recordCount;
 long sequenceCount;
 long sercosCount;
 long userVersion;
 long sampleRate;

} MPIControlConfig;

Description

adcCount represents the number of ADC(analog to digital converter) objects configured for

the controller.

 axisCount represents the number of axis objects configured for the controller.

captureCount represents the number of capture objects to be configured for the controller. A
capture object manages a single capture in an XMP motion controller. A capture is
a hardware latch of a motor position triggered by a motor input. The XMP
controller supports ten (10) capture objects per motion block. The default
configuration is two capture registers per motor, while the last two (8,9) on each
motion block are reserved for the auxiliary encoder (not supported).

compareCount represents the number of compare objects to be configured for the controller. The
XMP controller supports ten (10) compare objects per motion block. The default
configuration is two compare registers per motor, while the last two (8,9) on each
motion block are reserved for the auxiliary encoder (not supported).

cmdDacCount represents the number of DAC(digital to analog converter) objects to be configured

for the controller. There is one DAC per motor and one auxiliary DAC per motor.

auxDacCount represents the number of Auxiliary DAC objects to be configured for the controller.

There is one DAC per motor and one auxiliary DAC per motor.

 filterCount represents the number of filter objects to be configured for the controller.

motionCount represents the number of motion supervisor objects to be configured for the

controller.

 motorCount represents the number of motor objects to be configured for the controller.

recordCount represents the number of recorder objects to be configured for the controller. This
element allows the application to change the size of the recorder object's data
buffer using the mpiControlConfigGet/Set(...) methods. A larger data buffer size
can improve the performance of Motion Scope running on a slow host or running in
Client/Server mode over a congested network.

MPIControlConfig and MEIControlConfig

http://support.motioneng.com/soft/control/DataType/cf3.htm (1 of 2) [3/12/2002 9:08:38 AM]

 sequenceCount represents the number of sequence objects to be configured for the controller.

 sercosCount represents the number of sercos objects to be configured for the controller.

 userVersion allows the user to mark a firmware image with a user-defineable version number.

sampleRate represents the number of servo cycles the controller will be configured for. The

default value is 2000Hz. This means that one servo cycle takes 0.5milliseconds.

Description ControlConfig is the structure that contains the controller configuration information.

MEIControlConfig

 typedef struct MEIControlConfig {
 long preFilterCount;
 long compensatorCount;
 MEIXmpPreFilter PreFilter[MEIXmpMAX_PreFilters];
 MEIXmpCompensator Compensator[MEIXmpMAX_Compensators];
 long CompensationTable[MEIXmpCompTableSize];
 MEIXmpUserBuffer UserBuffer;
} MEIControlConfig;

Description
 preFilterCount This value defines the number of enabled pre-filters.

 compensatorCount This value defines the number of enabled compensators.

 PreFilter This array defines the configuration for each pre-filter.

 Compensator This array defines the configuration for each compensator.

 CompensationTable This array defines the compensation values for the compensators.

UserBuffer This structure defines the controller's user buffer. This is used for custom features

that require a controller data buffer.

See Also mpiControlConfigGet | mpiControlConfigSet | meiControlExtMemAvail |
Special Note on Dynamic Allocation of External Memory Buffers.

MPIControlConfig and MEIControlConfig

http://support.motioneng.com/soft/control/DataType/cf3.htm (2 of 2) [3/12/2002 9:08:38 AM]

MPIControlIo
MPIControlIo

 typedef struct MPIControlIo {
 unsigned long input[MPIControlIoWords];
 unsigned long output[MPIControlIoWords];;
} MPIControlIo;

Description ControlIo is used to hold the status of all the controller i/o lines on a board. This
does not include any CAN i/o lines.

INPUT all user i/o inputs are stored in bits of input[0]. User i/o input 0 corresponds to bit

0. Control i/o input 1 corresponds to bit 1.

OUTPUT all user i/o outputs are stored in bits of output[0]. User i/o output 0 corresponds to

bit 0. Control i/o output 1 corresponds to bit 1.

See Also MEIControlOutput | MEIControlInput | mpiControlIoGet | mpiControlIoSet

MPIControlIo

http://support.motioneng.com/soft/control/DataType/io1.htm [3/12/2002 9:08:43 AM]

http://support.motioneng.com/soft/control/Method/ioget1.htm
http://support.motioneng.com/soft/control/Method/ioset1.htm

MEIControlInput
MEIControlInput

 typedef enum {
 MEIControlInputUSER_0 = MEIXmpControlIOMaskUSER0_IN,
 MEIControlInputUSER_1 = MEIXmpControlIOMaskUSER1_IN,
 MEIControlInputUSER_2 = MEIXmpControlIOMaskUSER2_IN,
 MEIControlInputUSER_3 = MEIXmpControlIOMaskUSER3_IN,
 MEIControlInputUSER_4 = MEIXmpControlIOMaskUSER4_IN,
 MEIControlInputUSER_5 = MEIXmpControlIOMaskUSER5_IN,
} MEIControlInput;

Description ControlInput contains bit mask definitions for generic MPIControlIo input words.

See Also MEIControlOutput | MPIControlIo | mpiControlIoGet | mpiControlIoSet

MEIControlInput

http://support.motioneng.com/soft/control/DataType/ipt2.htm [3/12/2002 9:08:46 AM]

http://support.motioneng.com/soft/control/Method/ioget1.htm
http://support.motioneng.com/soft/control/Method/ioset1.htm

MPIControlMessage / MEIControlMessage
MPIControlMessage

 typedef enum {
 MPIControlMessageLIBRARY_VERSION, /* Keep as first control message */
 MPIControlMessageADDRESS_INVALID,
 MPIControlMessageCONTROL_INVALID,
 MPIControlMessageTYPE_INVALID,
 MPIControlMessageINTERRUPTS_DISABLED,
 MPIControlMessageEXTERNAL_MEMORY_OVERFLOW,
 MPIControlMessageADC_COUNT_INVALID,
 MPIControlMessageAXIS_COUNT_INVALID,
 MPIControlMessageCAPTURE_COUNT_INVALID,
 MPIControlMessageCOMPARE_COUNT_INVALID,
 MPIControlMessageCMDDAC_COUNT_INVALID,
 MPIControlMessageAUXDAC_COUNT_INVALID,
 MPIControlMessageFILTER_COUNT_INVALID,
 MPIControlMessageMOTION_COUNT_INVALID,
 MPIControlMessageMOTOR_COUNT_INVALID,
} MPIControlMessage;

Description
 MPIControlMessageADDRESS_INVALID Not used.

 MPIControlMessageCONTROL_INVALID Not used.

 MPIControlMessageTYPE_INVALID An invalid control type has been specified.

MPIControlMessageINTERRUPTS_DISABLED Use of interrupt requested, when interrupts are

disabled.

MEIControlMessage
 typedef enum {

 MEIControlMessageFIRMWARE_INVALID = MEIControlMessageLAST,
 MEIControlMessageFIRMWARE_VERSION,
} MEIControlMessage;

Description

MEIControlMessageFIRMWARE_INVALID This message code occurs when the firmware
executing in the controller is not valid. This
could be caused by incompatible firmware
code, corrupted code, or a hardware problem.

MEIControlMessageFIRMWARE_VERSION This message code occurs when the firmware

version is not compatible with the host library
version.

MPIControlMessage and MEIControlMessage

http://support.motioneng.com/soft/control/DataType/mes3.htm (1 of 2) [3/12/2002 9:08:50 AM]

See Also

MPIControlMessage and MEIControlMessage

http://support.motioneng.com/soft/control/DataType/mes3.htm (2 of 2) [3/12/2002 9:08:50 AM]

MEIControlOutput
MEIControlOutput

 typedef enum {
 MEIControlOutputUSER_0 = MEIXmpControlIOMaskUSER0_OUT,
 MEIControlOutputUSER_1 = MEIXmpControlIOMaskUSER1_OUT,
 MEIControlOutputUSER_2 = MEIXmpControlIOMaskUSER2_OUT,
 MEIControlOutputUSER_3 = MEIXmpControlIOMaskUSER3_OUT,
 MEIControlOutputUSER_4 = MEIXmpControlIOMaskUSER4_OUT,
 MEIControlOutputUSER_5 = MEIXmpControlIOMaskUSER5_OUT,
} MEIControlOutput;

Description ControlOutput contains bit mask definitions for generic MPIControlIo output words.

See Also MEIControlOutput | MPIControlIo | mpiControlIoGet | mpiControlIoSet

MEIControlOutput

http://support.motioneng.com/soft/control/DataType/opt2.htm [3/12/2002 9:08:54 AM]

http://support.motioneng.com/soft/control/Method/ioget1.htm
http://support.motioneng.com/soft/control/Method/ioset1.htm

MPIControlType
MPIControlType

 typedef enum {
 MPIControlTypeDEFAULT,
 MPIControlTypeMAPPED,
 MPIControlTypeIOPORT,
 MPIControlTypeDEVICE,
 MPIControlTypeCLIENT,
 MPIControlTypeFILE,
} MPIControlType;

Description ControlType is an enumeration that specifies the type of controller that needs to be
accessed when mpiControlCreate() is called. Please refer to the documentation for
mpiControlCreate() to see how to use this enumeration.

See Also MPIControl | mpiControlCreate | mpiControlType

MPIControlType

http://support.motioneng.com/soft/control/DataType/ty1.htm [3/12/2002 9:09:05 AM]

MEIControlVersion
MEIControlVersion
 typedef struct MEIControlVersion {
 struct { /* control.c */
 long version; /* MEIControlVersionMPI (YYYYMMDD) */

 struct { /* xmp.h */
 long version; /* MEIXmpVERSION */
 long option; /* MEIXmpOPTION */
 } firmware;
 } mpi;

 struct {
 long version; /* hardware version */

 struct { /* MEIXmpData.SystemData{} */
 long version; /* MEIXmpVERSION_EXTRACT(SoftwareID) */
 char revision; /* ('A' - 1) +
MEIXmpREVISION_EXTRACT(SoftwareID) */
 long subRevision; /* MEIXmpSUB_REV_EXTRACT(Option) */
 long developmentId; /* MEIXmpDEVELOPMENT_ID_EXTRACT(Option) */
 long option; /* MEIXmpOPTION_EXTRACT(Option) */
 long userVersion;
 } firmware;

 struct {
 long FPGA[MEIXmpFPGAsPerBlock];
 } motionBlock[MEIXmpMaxMotionBlocks];

 struct {
 struct {
 long version;
 long option;
 } busInterface;
 } board[MEIXmpMaxBoards];
 } xmp;
} MEIControlVersion;

Description ControlVersion is a structure that specifies the version information for the MPI and the
controller's firmware, FPGAs, and the bus interface.

 mpi A structure that contains the version information of the MPI

mpi.version A string representing the version of the MPI. The version of the MPI is broken down by

date, branch, and revision (MPIVersion.branch.revision). For ex: 20021220.1.2 means
MPI version 20021220, branch 1, revision 2.

mpi.firmware The firmware version information that the current version of the MPI will work with. A
new field has been added to the XMP's firmware to identify and differentiate between
intermediate branch software revisions. The branch value is represented as a hex number
between 0x00000000 and 0xFFFFFFFF. Each digit represents an instance of a branch
(0x1 to 0xF). A single digit represents a single branch from a specific version, two digits
represent a branch of a branch, three digits represent a branch of a branch of a branch, etc.

 xmp A structure that contains the version information of the XMP controller

 xmp.firmware The XMP's firmware version information.

MEIControlVersion

http://support.motioneng.com/soft/control/DataType/ver2.htm (1 of 2) [3/12/2002 9:09:08 AM]

xmp.motionBlock[] An array of structures that contain version information about the motion blocks on the

XMP.

 xmp.board An array of structures that contain version information about the XMP controller boards.

See Also MPIControl

MEIControlVersion

http://support.motioneng.com/soft/control/DataType/ver2.htm (2 of 2) [3/12/2002 9:09:08 AM]

Dynamic Allocation of External Memory Buffers
In previous versions, the XMP external memory was statically allocated at firmware compile time.

In version 20010119 and later, specific buffers of the XMP external memory are dynamically allocated. The
dynamic allocation feature allows an application to efficiently use the XMP controller's on-board memory and
allows for future expansion. The dynamically allocated buffers currently include the Frame Buffer, Record
Buffer, and SERCOS buffer. Each of these buffers sizes are recalculated during a call to
mpiControlConfigSet(...) if there is a change in any of the associated ControlConfig values.

The Frame Buffer is used for motion on each axis. The Frame Buffer is directly associated with the number
of EnabledAxes in the MPIControlConfig structure. The Frame Buffer will be allocated to the minimum size
required to support the number of enabled axes. The default number of EnabledAxes is eight (8).

The Record Buffer is used for the on-board data recorder. The Record Buffer is directly associated with the
number of EnabledRecord in the MPIControlConfig structure. The Record Buffer will be allocated to the
minimum size required to support the number of enabled records. The default number of EnabledRecords is
3064. Each record is the size of one memory word.

The Sercos Buffer is used for motion on each SERCOS ring network. The Sercos Buffer is directly associated
with the number of EnabledSercos in the MPIControlConfig structure. The Sercos Buffer will be allocated to
the minimum size required to support the number of enabled Sercos rings. The default number of
EnabledSercosRings, for a non-sercos controller is zero (0).

The meiControlExtMemAvail(...) method has been added to discover how much memory is available on your
controller.

MPI_DEF1 long MPI_DEF2
 meiControlExtMemAvail(MPIControl control,
 long *size)

The meiControlExtMemAvail(...) method will return the number of memory words available. Since each
record size is one memory word, the size returned from the above function can be used to increase the Record
Buffer to maximum size possible. This greatly improves client/server operation of Motion Scope and any
application used for data collection.

WARNING! Due to the nature of dynamic allocation and the clearing of external memory buffers
mpiControlConfigSet(...) should ONLY be called at motion application initialization time and NOT during
motion.

Return to Control Objects page

Dynamic Allocation of External Memory Buffers

http://support.motioneng.com/soft/control/ext_mem_bffrs.htm [3/12/2002 8:58:25 AM]

TCP/IP and Sockets for Control Objects

The MPI implements network functionality as client/server. The xmp\util\server.c program implements a
basic server. You just create a Control object of type MPIControlTypeCLIENT and specify the server's host in
the MPIControlAddress{}.client{} structure.

You can try “MPI networking” on a single machine by starting up the server program in a DOS window, and
then running a sample application in another DOS window. Note that you can specify the host name and port
of the server as command line arguments to all sample applications and utilities.

The way the MPI client/server works internally is that low-level mpiControlMemory and mpiControlInterrupt
methods are intercepted just before they read/write XMP memory. The methods are packaged up as remote
procedure calls and sent to the server for execution. The server sends the results back to the client.

There are 2 channels of communication - one channel to wait for interrupts, and another channel to do
everything else. All MPI methods that communicate with the XMP do so by calling (eventually) the low level
mpiControlMemory methods, so no application code needs to be changed other than the initial call to
mpiControlCreate(...). This is all implemented on WinNT using WinSock.

Note that it would be possible to implement the client/server scenario above using an RS-232 line rather than
TCP/IP WinSock. The MPI’s client/server protocol only requires a reliable transport mechanism (WinSock,
RS-232) between a client and server.

Return to Control Objects page

TCP/IP and Sockets for Control Objects

http://support.motioneng.com/soft/control/tcp_ip_sock.htm [3/12/2002 8:58:25 AM]

	motioneng.com
	Control Objects
	mpiControlCreate
	mpiControlDelete
	mpiControlValidate
	mpiControlAddress
	mpiControlConfigGet
	mpiControlConfigSet
	meiControlExtMemAvail
	mpiControlFlashConfigGet
	mpiControlFlashConfigSet
	meiControlGateGet
	meiControlGateSet
	meiControlSampleCounter
	meiControlSamplestoSeconds
	meiControlSecondstoSamples
	mpiControlType
	meiControlVersionGet
	meiControlVersionSet
	mpiControlMemory
	mpiControlMemoryAlloc
	mpiControlMemoryCount
	mpiControlMemoryFree
	mpiControlMemoryGet
	mpiControlMemorySet
	meiControlCycleWait
	mpiControlInit
	mpiControlInterruptEnable
	mpiControlInterruptWait
	mpiControlInterruptWake
	mpiControlReset
	meiControlSampleWait
	meiControlPlatform
	MPIControlAddress
	MPIControlConfig and MEIControlConfig
	MPIControlIo
	MEIControlInput
	MPIControlMessage and MEIControlMessage
	MEIControlOutput
	MPIControlType
	MEIControlVersion

	Dynamic Allocation of External Memory Buffers
	TCP/IP and Sockets for Control Objects

