Sercos Objects

Sercos Objects

I ntroduction

A Ser cos object manages an individual SERCOS master.

The SERCOS (Seria Real-Time Communication System) protocol was designed
specifically for the motion control industry. The protocol uses aring topology which
allows communication to occur at specific assigned times within a predetermined cycle.
Thus, SERCOS is deterministic allowing the Master (control unit) to synchronize
command and feedback values to and from all of the Slaves (drives).

The MPI supports the use of SERCOS fiberoptic technology. The XMP-SERCOS-CPCI
supports up to 3 SERCOS rings with support for up to 24 drives, in a 2-sot
configuration in a CompactPCI form-factor. The MPI includes 4 SERCOS object types:
SERCOS, NODE, IDN, and IDNLIST. Utility programs for initializing aring and
reading or writing IDNs are a so provided with the software distribution.

Only alimited number of SERCOS drive manufacturers are supported in the MPI. For a
list of supported drives, click here. Contact MEI for more information about supported
SERCOS drives.

Introduction | Overview | Data Types | Communications
Procedures | Telegrams | Topologies

Methods

Create, Delete, Validate Methods
mpi SercosCr eate Create Sercos object
mpi SercosDelete Delete Sercos object
mpi SercosValidate Validate Sercos object

Configuration and Information M ethods

mpi SercosConfigGet Get Sercos object’s configuration

mpi SercosConfigSet Set Sercos object’s configuration

mpi SercosError Set contents of error with platform-specific info (about the error)
mpi SercosFlashConfigGet Get flash config of Sercos

mpi SercosFlashConfigSet Set flash config of Sercos

mei SercosSer vicel dnFieldGet

mei SercosSer vicel dnFieldSet

mei SercosSer vicePr ocedur e

mpiSercosStatus/ meiSercosStatus Get the status of a Sercos object

http://support.motioneng.com/soft/sercos/scs_out.htm (1 of 3) [3/12/2002 2:30:38 PM]

Sercos Objects

Action Methods

mpi Sercosl nit
mpi SercosReset

Memory Methods

mpiSercosM emory
mpi SercosM emor yGet
mpi SercosM emor ySet

Relational M ethods

mpi SercosControl
mpi SercosNumber

List Methodsfor Sercos Nodes
mpi SercosNode

mpi SercosNodeAppend
mpi SercosNodeCount
mpi SercosNodeFir st

mpi SercosNodel ndex
mpi SercosNodel nsert
mpiSercosNodel ast

mpi SercosNodeL istGet
mpi SercosNodel ist Set
mpi SercosNodeNext

mpi SercosNodePr evious
mpi SercosNodeRemove

Data Types

M Pl SercosBaud
MPISercosError
MPISercosError Group
MPISercosError Type
MPI Sercosl oopStatus

Initialize a Sercos object to a specified SERCOS phase
Reset a Sercos object to SERCOS Phase 0

Set Sercos memory address
Copy bytes of Sercos memory to application memory
Copy bytes of application memory to Sercos memory

Get handle to Control object that a Sercos object is associated with

Get the index of a Sercos object from the Control object that the Sercos object is
associated with

Get handle to the indexth Node in a Sercos object’s list
Append a Node object to a Sercos object’s list

Get the number of Node objects in a Sercos object’ s list
Get handleto thefirst Node in a Sercos object’ s list
Get the index of a Node object in a Sercos object’s list
Insert aNode into a Sercos object’ s list

Get handle to the last Node in a Sercos object’s list

Get the list of Nodes associated with a Sercos object
Create alist of Nodes associated with a Sercos object
Get handle to the next Node in a Sercos object’ s list
Get handle to the previous Node in a Sercos abject’ s list
Remove a Node from a Sercos object’ s list

M Pl SercosM essage / M El SercosM essage

M Pl SercosPr ocedur eAction
M El SercosSer viceContainer
M PI SercosStatus

Constants

MPISercosNODE_COUNT_MAX

http://support.motioneng.com/soft/sercos/scs_out.htm (2 of 3) [3/12/2002 2:30:38 PM]

Sercos Objects

Macros

mpiSercosNodel dnDataSET
mpiSercosNodel dAnGET

Copyright & 2002
Motion Engineering

http://support.motioneng.com/soft/sercos/scs_out.htm (3 of 3) [3/12/2002 2:30:38 PM]

mpiSercosCreate

mpi SercosCreate

Declar ation const MPI Sercos npi SercosCreat e(MPl Control control,
| ong nunber)

Required Header stdmpi.h

Descri pti on Ser cosCr eate creates a Sercos object that is associated with the SERCON 410B chip,
which in turnisidentified by number on a motion controller (control). SercosCreate
Is the equivalent of a C++ constructor.

Return Values
handle to a Sercos object (associated with number and control)
MPIHandlevOID if the object could not be created

See Also mpi SercosDel ete | mpiSercosValidate

http://support.motioneng.com/soft/sercos/Method/createl.htm [3/12/2002 2:32:47 PM]

http://support.motioneng.com/soft/Control/cnl_out.htm

mpiSercosDelete

mpi SercosDel ete

Declar ation | ong npi SercosDel et e(MPI Ser cos ser cos)

Required Header stdmpi.h

Description Ser cosDelete deletes a Sercos object and invalidates its handle (sercos). SercosDelete
Isthe equivalent of a C++ destructor.

Return Values

M PIM essageOK if SercosDelete successfully deletes the Sercos object and invalidates its handle

See Also mpi SercosCreate | mpiSercosValidate

http://support.motioneng.com/soft/sercos/Method/deletel.htm [3/12/2002 2:32:49 PM]

mpiSercosValidate

mpi SercosValidate

Declaration | ong npi Ser cosVal i dat e(MPI Ser cos ser cos)

Required Header stdmpi.h

Description Ser cosV alidate validates the Sercos object and its handle (sercos).
Return Values
M PIM essageOK if Sercosisahandleto avalid object.

See Also mpi SercosCreate | mpi SercosDelete

http://support.motioneng.com/soft/sercos/Method/valid1.htm [3/12/2002 2:32:50 PM]

mpiSercosConfigGet

mpi SercosConfigGet

Declar ation | ong npi Ser cosConfi gGet (IMPl Ser cos sercos,
MPI Ser cosConfi g *config,
voi d *ext ernal)

Required Header stdmpi.h

Descri pti on Ser cosConfigGet gets a Sercos object’ s (sercos) configuration and writes it into the
structure pointed to by config, and also writes it into the implementation-specific
structure pointed to by external (if external isnot NULL).

The configuration information in external isin addition to the configuration
information in config, i.e, the configuration information in config and in external is
not the same information. Note that config or external can be NULL (but not both
NULL).

XMP Only external either points to a structure of type MEISercosConfig{} or isNULL.

Return Values

M PI M essageOK if SercosConfigGet successfully writes the Sercos object’ s configuration to the

structure(s)

See Also mpi SercosConfigSet

http://support.motioneng.com/soft/sercos/Method/cfgetl.htm [3/12/2002 2:32:53 PM]

mpiSercosConfigSet

mpi SercosConfigSet

Declar ation | ong npi Ser cosConfi gSet (MPl Ser cos sercos,
MPI SercosConfi g *config,
voi d *ext ernal)

Required Header stdmpi.h

Descri pti on Ser cosConfigSet sets a Sercos object’s (sercos) configuration using data from the
structure pointed to by config, and also using data from the implementation-specific
structure pointed to by external (if external isnot NULL).

The configuration information in external isin addition to the configuration
information in config, i.e, the configuration information in config and in external is
not the same information. Note that config or external can be NULL (but not both
NULL).

XMP Only external either points to a structure of type MEISercosConfig{} orisNULL.

Return Values

M PI M essageOK if SercosConfigSet successfully sets the Sercos object’ s configuration using data

from the structure(s)

See Also mpi SercosConfigGet

http://support.motioneng.com/soft/sercos/Method/cfsetl.htm [3/12/2002 2:33:01 PM]

mpiSercosError

mpi Ser cosError

Declar ation | ong npi Ser cosError (MPl Ser cos ser cos,
VPl Ser cosError *error)

Required Header stdmpi.h

Descri pti on SercosError reads the error code from a Sercos object and writesit into the location
pointed to by error.
Ser cos a handle to a Sercos object
*error a pointer to a MPI SercosError
Return Values
M PIM essageOK if mpiSercosError successfully writes the current sercos error to error.
See Also

http://support.motioneng.com/soft/sercos/Method/errl.htm [3/12/2002 2:33:05 PM]

mpiSercosFlashConfigGet

mpi Ser cosklashConfigGet

Declar ation | ong npi Ser cosFl ashConfi gGet (MPl Ser cos ser cos,
voi d *fl ash,
MPI SercosConfig *confi g,
voi d *ext ernal)

Required Header stdmpi.h

Description Ser cosFlashConfigGet gets a Sercos object’s (sercos) flash configuration and writes
it in the structure pointed to by config, and also writesit in the
implementation-specific structure pointed to by external (if external isnot NULL).

The Sercos object’ s flash configuration information in external isin addition to the
Sercos object’ s flash configuration information in config, i.e, the flash configuration
information in config and in external is not the same information. Note that config or
external can be NULL (but not both NULL).

XMP Only external either points to a structure of type M EI SercosConfig{} or isNULL.

Return Values

if SercosFlashConfigGet successfully writes the Sercos object’ s flash configuration
to the structure(s)

flash is either an MEIFlash handle or MPIHandleVOID. If flash is
MPIHandleVOID, an MEIFlash object will be created and deleted internally.

See Also M EI Flash | mpi SercosFlashConfigSet

M Pl M essageOK

http://support.motioneng.com/soft/sercos/Method/flacfgetl.htm [3/12/2002 2:33:08 PM]

http://support.motioneng.com/soft/Flash/fla_out.htm

mpiSercosFlashConfigSet

mpi Ser cosklashConfigSet

Declar ation | ong npi Ser cosFl ashConfi gSet (MPl Ser cos ser cos,
voi d *fl ash,
MPI SercosConfig *confi g,
voi d *ext ernal)

Required Header stdmpi.h

Descri pti on Ser cosFlashConfigSet sets a Sercos object’s (sercos) flash configuration using data
from the structure pointed to by config, and aso using data from the
implementation-specific structure pointed to by external (if external isnot NULL).

The Sercos object’ s flash configuration information in external isin addition to the
Sercos object’ s flash configuration information in config, i.e, the flash configuration
information in config and in external is not the same information. Note that config or
external can be NULL (but not both NULL).

XMP Only external either points to a structure of type M EI SercosConfig{} or isNULL.

Return Values

if SercosFlashConfigSet successfully sets the Sercos object’ s flash configuration
using data from the structure(s)

flash is either an MEIFlash handle or MPIHandleVOID. If flash is
MPIHandleVOID, an MEIFlash object will be created and deleted internally.

See Also M EI Flash | mpi SercosFlashConfigGet

M Pl M essageOK

http://support.motioneng.com/soft/sercos/Method/flacfsetl.htm [3/12/2002 2:33:09 PM]

http://support.motioneng.com/soft/Flash/fla_out.htm

meiSercosServiceldnFieldGet

mei Ser cosServicel dnFieldGet

Declaration
| ong nei SercosServi cel dnFi el dGet (MPI Ser cos sercos,
VEI Ser cosSer vi ceCont ai ner *servi ce,
MPI | dn i dn,
MPI I dnFi el d field)
Required Header stdmei.h
Descri ption Ser cosSer vicel dnFieldGet uses a service container to read the specified field from

an idn, and write it into the idn object.

Sercos a handle to a Sercos object

*service a pointer to a service container

idn ahandle to an Idn object

field enumeration corresponding to each element in the structure MPI1dnElement
Return Values
M PI M essageOK if SercosServiceldnFieldGet successfully reads the field from the service container.

See Also mpi SercosServicel dnFieldSet | MPIIdnElement

http://support.motioneng.com/soft/sercos/Method/srvidnfldget2.htm [3/12/2002 2:33:15 PM]

http://support.motioneng.com/soft/Idn/idn_out.htm
http://support.motioneng.com/soft/Idn/DataType/fld1.htm
http://support.motioneng.com/soft/Idn/DataType/elm1.htm

meiSercosServiceldnFieldSet

mel Ser cosServicel dnFiel dSet

Declaration
| ong nei SercosServi cel dnFi el dSet (MPI Ser cos sercos,
VEI Ser cosSer vi ceCont ai ner *servi ce,
MPI | dn i dn,
MPI | dnFi el d field)
Required Header stdmei.h
Description Ser cosSer vicel dnFieldSet uses a service container to write the specified field from
an idn object to anidn.
Ser cos ahandle to a Sercos object
*service a pointer to a service container
idn ahandle to an Idn object
field enumeration corresponding to each element in the structure MPI1dnElement
Return Values

if SercosServiceldnFieldSet successfully writes the field to an idn viathe service

M Pl M essageOK)
container.

See Also mpi SercosServicel dnFiel dGet | MPI1dnElement

http://support.motioneng.com/soft/sercos/Method/srvidnfldset2.htm [3/12/2002 2:33:17 PM]

http://support.motioneng.com/soft/Idn/idn_out.htm
http://support.motioneng.com/soft/Idn/DataType/fld1.htm
http://support.motioneng.com/soft/Idn/DataType/elm1.htm

meiSercosServiceProcedure

mel Ser cosServiceProcedure

Declar ation

| ong nei Ser cosServi ceProcedur e(MPl Ser cos sercos,
MEI Ser cosSer vi ceCont ai ner *servi ce,
MPI Ser cosProcedur eAction action

MPI 1 dn i dn,
unsi gned | ong *st at us)
Required Header stdmei.h
Description Ser cosSer vicePr ocedur e uses a service container to send a procedure action to a
sercosidn.
Ser cos ahandle to a Sercos object
*service a pointer to a service container
action acommand used to invoke a procedure
idn ahandle to an Idn object
*status apointer to an unsigned long
Return Values
M PI M essageOK goﬁta;_cr?es,rSerw ceProcedure successfully sends a procedure action via a service

See Also M Pl SercosProcedureAction

http://support.motioneng.com/soft/sercos/Method/srvproc2.htm [3/12/2002 2:33:23 PM]

http://support.motioneng.com/soft/Idn/idn_out.htm

mpiSercosStatus and meiSercosStatus

mpi SercosStatus / mei SercosStatus
mpiSer cosStatus

Declaration | ong npi Ser cosSt at us(MPI Ser cos ser cos,
WPl Ser cosSt at us *st at us,
voi d *external)

Required Header stdmpi.h

Description Ser cosStatus writes the status of a Sercos object (sercos) to the structure pointed to
by status.

Return Values

M PIM essageOK if SercosStatus successfully writes the status of a Sercos object to the structure

mei Ser cosStatus

Declaration | ong nei SercosSt at us(MPI Cont r ol control,
MEI Mot or Typelnfo *not or | nf o,
VPl Ser cos St at us *st at us)

Required Header stdmei.h

Descri p'[i on Ser cosStatus reads the status from a control and writesit into the location pointed to

by status. The statusis read from the nodeNumber specified in the structure pointed
to by motor|nfo.

control a handle to the Sercos object.
*motorinfo apointer to a MEIMotorTypelnfo structure
*status a handle to a Node object.
Return Values
M PIM essageOK if SercosStatus successfully reads the status.
See Also

http://support.motioneng.com/soft/sercos/Method/sts3.htm [3/12/2002 2:33:26 PM]

http://support.motioneng.com/soft/Control/cnl_out.htm
http://support.motioneng.com/soft/Motor/DataType/tyinf2.htm

mpiSercoslnit

mpi Sercosl nit
Declaration | ong npi Sercoslnit (Ml Sercos sercos,
| ong phase)
Required Header stdmpi.h
Description Ser cosl nit advances the initialization of a Sercos object (sercos) to a specific phase

(phase).

If phase = -1, then the Sercos object is moved to Phase 4 (full initialization). If the
current phase number (of the Sercos object) is greater than phase, initialization
restarts at Phase 0 and advances to Phase phase.

Return Values
M PI M essageOK ghieg:osl nit successfully initializes the state of a Sercos object (sercos) to the Phase
See Also

http://support.motioneng.com/soft/sercos/Method/initl.htm [3/12/2002 2:33:31 PM]

mpiSercosReset

mpi Ser cosReset

Declar ation | ong npi Ser cosReset (MPl Sercos ser cos)

Required Header stdmpi.h

Description Ser cosReset resets a Sercos object (sercos), thereby setting itsinitialization phase to
0.

Return Values

M Pl M essageOK if SercosReset successfully resets the Sercos object

See Also

http://support.motioneng.com/soft/sercos/Method/rst1.htm [3/12/2002 2:33:34 PM]

mpiSercosMemory

mpi SercosMemory

Declar ation | ong npi SercosMenory(MPl Sercos sercos,
voi d **menory)

Required Header stdmpi.h

Descri pti on Ser cosM emory writes an address [that is used to access Sercos (sercos) memory] to
the contents of memory. This address (or an address calculated from it) is passed as
the src argument to mpiSercosMemoryGet(...) and as the dst argument to
mpi SercosM emory Set(....).

Return Values

M PI M essageOK :1 eSre;]rcc):rc;/sMemory successfully writes the Sercos memory address to the contents of

See Also mpi SercosM emoryGet | mpi SercosM emorySet

http://support.motioneng.com/soft/sercos/Method/mem1.htm [3/12/2002 2:33:37 PM]

mpiSercosMemoryGet

mpi SercosM emor yGet

Declar ation | ong npi SercosMenor yGet (MPl Ser cos ser cos,
voi d *dst,
voi d *src,
| ong count)

Required Header stdmpi.h

Descri pti on Ser cosM emoryGet copies count bytes of Sercos (sercos) memory (starting at address
src) to application memory (starting at address dst).

Return Values

M PI M essageOK if SercosMemoryGet successfully copies count bytes of Sercos memory to

application memory

See Also mpi SercosM emorySet | mpi SercosM emory

http://support.motioneng.com/soft/sercos/Method/memgetl.htm [3/12/2002 2:33:41 PM]

mpiSercosMemorySet

mpi SercosM emorySet

Declar ation | ong npi Ser cosMenor ySet (MPl Ser cos ser cos,
voi d *dst,
voi d *src,
| ong count)

Required Header stdmpi.h

Descri pti on Ser cosM emorySet copies count bytes of application memory (starting at address src)
to Sercos (sercos) memory (starting at address dst).
Return Values
M PI M essageOK if SercosMemorySet successfully copies count bytes of application memory to
Sercos memory
See Also mpi SercosM emoryGet | mpi SercosM emory

http://support.motioneng.com/soft/sercos/Method/memsetl.htm [3/12/2002 2:33:42 PM]

mpiSercosControl

mpi SercosControl

Declar ation const MPI Control npi SercosControl (MPl Sercos sercos)

Required Header stdmpi.h

Descri p'[i on Ser cosControl returns a handle to the Control object with which the Sercos object is
associated.
Ser cos a handle to the Sercos object
Return Values
handle to the Control object that a Sercos object (sercos) is associated with
MPIHandlevOID if sercosisinvalid

See Also mpi SercosCreate | mpi Control Create

http://support.motioneng.com/soft/sercos/Method/cnl1.htm [3/12/2002 2:33:46 PM]

http://support.motioneng.com/soft/Control/cnl_out.htm
http://support.motioneng.com/soft/Control/Method/create1.htm

mpiSercosNumber

mpi SercosNumber

Declar ation | ong npi Ser cosNunber (MPl Ser cos ser cos,
| ong *nunber)

Required Header stdmpi.h

Descri pti on SercosNumber writes the index of a Sercos object (sercos, on the motion controller
that the Sercos object is associated with) to the location pointed to by number.

Return Values

M PIM essageOK if SercosNumber successfully writes the Sercos object’ s index to the location

See Also

http://support.motioneng.com/soft/sercos/Method/num1.htm [3/12/2002 2:33:50 PM]

mpiSercosNode

mpi SercosNode
Declar ation const MPI Node npi SercosNode(MPI Sercos sercos,
| ong I ndex)

Required Header stdmpi.h

Description Ser cosNode returns the element at the position on the list indicated by index.
Ser cos a handle to the Sercos object.
index apositionin thelist.

Return Values

handle to the indexth Node object of a Sercos object (sercos)

if sercosisinvalid
M PIHandleVoID if index islessthan O

if index is greater than mpiSer cosCount(sercos)
if index isequal to mpiSer cosCount(sercos)

MPIMessageARG_INVALID if index is a negative number.
MEIL istM essageEL EMENT_NOT_FOUND Ll;]:er:fj;x is greater than or equal to the number of elementsin
MPIMessageHANDLE_INVALID if sercosisan invalid handle.

See Also

http://support.motioneng.com/soft/sercos/Method/nd1.htm [3/12/2002 2:33:54 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeAppend

mpi SercosNodeAppend

Declar ation | ong npi Ser cosNodeAppend(MPl Ser cos ser cos,
MPI Node node)

Required Header stdmpi.h

Descri pti on Ser cosNodeA ppend appends a Node object (node) to a Sercos object (sercos).
Ser cos a handle to the Sercos object.
node a handle to a Node object.
Return Values
M PI M essageOK if Sercosl_lodeAppend successfully appends the Node object to the
Sercos object
MPIMessageHANDLE INVALID Either sercos or nodeis an invalid handle.
MPIMessageNO_MEMORY Not enough memory was available.
See Also

http://support.motioneng.com/soft/sercos/Method/ndapdl.htm [3/12/2002 2:33:57 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeCount

mpi SercosNodeCount

Declar ation | ong npi Ser cosNodeCount (MPl Ser cos ser cos)

Required Header stdmpi.h

Description Ser cosNodeCount returns the number of elements on the list.
Ser cos a handle to the Sercos object.
Return Values
number of Node objects in a Sercos object (sercos)
-1 if sercosisinvalid
0 if sercosis empty
See Also

http://support.motioneng.com/soft/sercos/Method/ndcntl.htm [3/12/2002 2:34:00 PM]

mpiSercosNodeFirst

mpi SercosNodeFirst

Declar ation const MPI Node npi Ser cosNodeFi rst (MPl Sercos sercos)

Required Header stdmpi.h

Description Ser cosNodeFir st returnsthe first element in the list. This function can be used in
conjuntion with mpi SercosNodeNext() in order to iterate through the list.
Ser cos a handle to the Sercos object.
Return Values
handle to the first Node object of a Sercos object (sercos)
MPIHandlevOID I szrspElsinge e
if sercosisempty
MPIMessageHANDLE_INVALID if sercosisan invalid handle.
See Also mpi SercosNodeNext | mpi SercosNodel ast

http://support.motioneng.com/soft/sercos/Method/ndfst1.htm [3/12/2002 2:34:04 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodelndex

mpi SercosNodel ndex

Declar ation | ong npi Ser cosNodel ndex(MPl Ser cos ser cos,
MPI Node node)

Required Header stdmpi.h

Description Ser cosNodel ndex returns the position of node on the list.
Ser cos a handle to the Sercos object.
node a handle to a Node object.
Return Values
index of a Node object (node) in a Sercos object (sercos)

if sercosisinvalid

- if node was not found in sercos

See Also

http://support.motioneng.com/soft/sercos/Method/ndinx1.htm [3/12/2002 2:34:08 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodelnsert

mpi SercosNodel nsert

Declar ation | ong npi SercosNodel nsert (MPl Ser cos ser cos,
VPl Node node,
MPI Node i nsert)

Required Header stdmpi.h

Descri pti on Ser cosNodel nsert inserts a Node object (insert) in a Sercos object (sercos), just after
the specified Node object (node).
Return Values
if SercosNodelnsert successfully inserts the Node object (insert) just after the
L2 specified Node object (node), in the Sercos object (sercos)
See Also

http://support.motioneng.com/soft/sercos/Method/ndins1.htm [3/12/2002 2:34:11 PM]

http://support.motioneng.com/soft/Node/nd_out.htm
http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeLast

mpi SercosNodelast

Declar ation const MPI Node npi Ser cosNodelLast (MPI Ser cos ser cos)

Required Header stdmpi.h

Descri p'[i on SercosNodel ast returns the last element in the list. This function can be used in
conjuntion with mpiSercosNodePrevious() in order to iterate through the list
backwards.

Ser cos a handle to the Sercos object.

Return Values

handle to the last Node object (node) of a Sercos object (sercos)

M PIHandlevolD if sercosisinvalid

if sercosisempty
MPIMessageHANDLE_INVALID if sercosisan invalid handle.

See Also mpi SercosNodePrevious | mpiSercosNodeFirst

http://support.motioneng.com/soft/sercos/Method/ndlas1.htm [3/12/2002 2:34:15 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeListGet

mpi SercosNodeL istGet

Declar ation | ong npi SercosNodeLi st Get (MPl Sercos ser cos,

| ong *nodeCount ,
MPI Node *nodelLi st)

Required Header stdmpi.h

Description SercosNodeL istGet gets the Nodes in a Sercos object (sercos), and writes an array (of
handles to those Nodes, size= nodeCount) to the location pointed to by nodelList, and

also writes the number of Nodes (in the Sercos object) to the location pointed to by
nodeCount.

Return Values

M Pl M essaqeOK if SercosNodeListGet successfully writes the array of Node handles and the number
9 of Nodes to the 2 locations (nodeL ist, nodeCount)

See Also mpi SercosNodeL i stSet

http://support.motioneng.com/soft/sercos/Method/ndlisgetl.htm [3/12/2002 2:34:19 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeListSet

mpi SercosNodeL istSet

Declaration | ong npi Ser cosNodelLi st Set (MPl Ser cos ser cos,

| ong nodeCount ,
VPl Node *nodelLi st)

Required Header stdmpi.h

Description Using the Node handles specified by nodeList, SercosNodeL istSet creates alist of
Nodes (Iength=nodeCount). Any existing Node list of the Sercos object (sercos) is
completely replaced.

The nodeList argument is the address of an array of nodeCount Node handles, or is
NULL (if nodeCount is equal to zero).

Y ou can aso create a Node list incrementally (one Node at atime), by using the
mpiNodeL istAppend(...) and/or mpiNodeL istlnsert(...) methods. Y ou can use any
mpiNodeL.ist method to examine and manipulate a Node list sequence, regardless of
how the the Node list was created.

Return Values
M PI M essageOK if ldnListSet successfully creates the IdnList using the handlesin idnArray

See Also mpi SercosNodeL istGet

http://support.motioneng.com/soft/sercos/Method/ndlissetl.htm [3/12/2002 2:34:21 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeNext

mpi SercosNodeNext

Declar ation const MPI Node npi Ser cosNodeNext (MPl Ser cos ser cos,
MPI Node node)

Required Header stdmpi.h

Descri pti on Ser cosNodeNext returns the next element following "node" on the list. This function
can be used in conjuntion with mpiSercosNodeFirst() in order to iterate through the
list.

Ser cos a handle to the Sercos object.
node a handle to a Node object.
Return Values
to the Node object that isjust after the specified Node object (node), in a
handle :
Sercos object (sercos)
M PlHandlevolD if sercosisinvalid

if nodeisthe last Node in the Sercos object (sercos)
MPIMessageHANDL E_INVALID Either sercos or nodeisaninvalid handle.

See Also mpi SercosNodeFirst | mpi SercosNodePrevious

http://support.motioneng.com/soft/sercos/Method/ndnxt1.htm [3/12/2002 2:34:25 PM]

http://support.motioneng.com/soft/Node/nd_out.htm
http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodePrevious

mpi SercosNodePrevious

Declar ation const MPI Node npi SercosNodePrevi ous(MPI Sercos ser cos,
MPI Node node)

Required Header stdmpi.h
Description Ser cosNodePr evious returns the previous element prior to "node" on thelist. This

function can be used in conjuntion with mpiSercosNodel ast() in order to iterate
through the list backwards.

Ser cos a handle to the Sercos object.
node a handle to a Node object.
Return Values
to the Node object that is just before the specified Node object
handle . .
(node), in a Sercos object (sercos)
if sercosisinvalid
Pl EelE iIf node isthe first Node in the Sercos object (sercos)
MPIMessageHANDLE INVALID Either sercos or nodeis aninvalid handle.

See Also mpi SercosNodel ast | mpi SercosNodeNext

http://support.motioneng.com/soft/sercos/Method/ndprel.htm [3/12/2002 2:34:26 PM]

http://support.motioneng.com/soft/Node/nd_out.htm
http://support.motioneng.com/soft/Node/nd_out.htm

mpiSercosNodeRemove

mpi SercosNodeRemove

Declar ation | ong npi Ser cosNodeRenove(MPl Ser cos ser cos,
MPI Node node)

Required Header stdmpi.h

Description Ser cosNodeRemove removes a Node object (node) from a Sercos object (sercos).

Return Values

M PIM essageOK if SercosNodeRemove successfully removes the Node object from the Sercos object

See Also

http://support.motioneng.com/soft/sercos/Method/ndrmv1.htm [3/12/2002 2:34:31 PM]

http://support.motioneng.com/soft/Node/nd_out.htm

MPISercosBaud

M PI SercosBaud

M PI Ser cosBaud

t ypedef enum {
MPI Ser cosBaudl NVALI D,

MPI Ser cosBaud2MBI T,

MPI Ser cosBaud4MBI T,

MPI Ser cosBaudl1OMBI T,
} MPI Ser cosBaud;

Descri pti on Ser cosBaud defines the different baud rates that the SERCOS ring can communicate
at.

See Also

http://support.motioneng.com/soft/sercos/DataType/baudl.htm [3/12/2002 2:34:38 PM]

MPISercosError

M Pl SercosError

M Pl Ser cosError

typedef enum {
MPI Ser cosError SHI FT,

MPI Ser cosEr r or GENERAL,

MPI Ser cosEr r or NONE,

MPI Ser cosEr r or CHANNEL _NOT _OPEN,
MPI Ser cosEr r or CHANNEL _ACCESS,

MPI Ser cosError | DN,
MPI Ser cosError NO_I DN,
MPI Ser cosError | DN_ACCESS,

MPI Ser cosEr r or NAME,

MPI Ser cosErr or NO_NAME,

MPI Ser cosEr r or NAVE_TOO_SHORT,

MPI Ser cosError NAVE_TOO _LONG,

MPI Ser cosErr or NAVE_NO_ CHANGE,

MPI Ser cosErr or NAME_VWRI TE_PROTECT,

MPI Ser cosError ATTR,

MPI Ser cosError ATTR_TOO SHORT,

MPI Ser cosError ATTR_TOO_LONG

MPI Ser cosError ATTR_NO_ CHANGE,

MPI Ser cosError ATTR_WRI TE_PROTECT,

MPI Ser cosError UNI T,

MPI Ser cosError NO UNI T,

MPI Ser cosError UNI T_TOO_SHORT,

MPI SercosError UNI T_TOO LONG,

MPI Ser cosError UNI T_NO_ CHANGE,

MPI Ser cosError UNI T_WRI TE_PROTECT,

MPI Ser cosError M N,

MPI Ser cosError NO M N,

MPI Ser cosErrorM N_TOO_SHORT,

MPI SercosErrorM N_TOO LONG,

MPI Ser cosError M N_NO_ CHANGE,

MPI Ser cosError M N_WRI TE_PROTECT,

MPI Ser cosEr r or MAX,

MPI Ser cosErr or NO_NMAX,

MPI Ser cosErr or MAX_TOO_SHORT,

MPI Ser cosErr or MAX_TOO LONG,

MPI Ser cosEr r or MAX_NO_CHANGE,

MPI Ser cosErr or MAX_WRI TE_PROTECT,

MPI Ser cosErr or OP,
MPI Ser cosError OP_TOO_SHORT,

http://support.motioneng.com/soft/sercos/DataType/errl.htm (1 of 2) [3/12/2002 2:34:45 PM]

MPISercosError

MPI Ser cosError OP_TOO _LONG,
MPI Ser cosErr or OP_NO_ CHANGE,
MPI Ser cosError OP_WRI TE_PROTECT,
MPI Ser cosError OP_M N,
MPI Ser cosErr or OP_NAX,
MPI Ser cosErr or OP_DATA,
MPI Ser cosEr r or OP_PASSWORD,
} MPI SercosError;

Description The SercosError enumeration defines all the different errors that can occur in
SERCOS.

See Also For amore in-depth breakdown of the errors, please refer to a SERCOS Specification Manual .

http://support.motioneng.com/soft/sercos/DataType/errl.htm (2 of 2) [3/12/2002 2:34:45 PM]

MPISercosErrorGroup

M PI SercosErrorGroup

M PI Ser coskrror Group

t ypedef enum {
MPI Ser cosEr r or G oupl NVALI D,

MPI Ser cosErr or G oupGENERAL,
MPI Ser cosError G oupl DN,

MPI Ser cosEr r or G oupNAME,

MPI Ser cosError G oupATTR,

MPI Ser cosError G oupUNI T,

MPI Ser cosError G oupM N,

MPI Ser cosEr r or G oupMAX

MPI Ser cosError G oupOP,

} MPI SercosError G oup;

Descri ption When an error occurs, Ser cosError Group defines what part of the IDN field has the
error.

See Also

http://support.motioneng.com/soft/sercos/DataType/errgrpl.htm [3/12/2002 2:34:50 PM]

MPISercosErrorType

MPI SercosError Type

M Pl SercosError Type

t ypedef enum {
MPI Ser cosEr ror Ty peNONE,
MPI Ser cosError TypeDOES_NOT_EXI ST,
MPI Ser cosError TypeTOO_SHORT,
VPl Ser cosError TypeTOO_LONG
MPI Ser cosEr ror TypeNO_CHANGE,
MPI Ser cosError TypeWRl TE_PROTECT,
MPI Ser cosError TypeTOO SMALL,
MPI Ser cosError TypeTQOO BI G
VPl Ser cosError Typel NVALI D_DATA,
MPI Ser cosError Typel NVALI D_ACCESS,
VPl Ser cosErr or TypePASSWORD PROTECT,
} MPI SercosError Type;

Description Ser cosError Type enumeration contains basic SERCOS error types that are ORed into the
M PI SercosErrorGroup enumeration to construct unique M Pl SercosError codes.

MPI SercosError TypeNONE This error type indicates no error occurred.

MPI SercosError TypeDOES NOT_EXIST This error type indicates that a service channel is not
open, an idn does not exist or an idn element does not

exist.

MPISercosError TypeT OO_SHORT This error type indicates an idn element is too short.

MPI SercosError TypeTOO_LONG This error type indicates an idn element is too long.

MPI SercosError TypeNO_CHANGE This error type indicates an idn element cannot be
changed.

MPISercosError TypeWRITE_PROTECT This error type indicates an idn element is read only.

MPISercosError TypeTOO_SMALL This error type indicates the idn operation datais too
small.

MPI SercosError TypeTOO _BIG This error type indicates the idn operation data is too
big.

MPISercosError Typel NVALID_DATA This error type indicates the idn operation data is not
valid.

MPI SercosError Typel NVALID _ACCESS This error type indicates a service channel is not
accessible or an idn is not accessible.

M PI SercosError TypePASSWORD_PROTECT This error type indicates the idn operation datais
password protected.

See Also M Pl SercosError

http://support.motioneng.com/soft/sercos/DataType/errtyl.htm [3/12/2002 2:34:54 PM]

MPISercosLoopStatus

M Pl SercosL oopStatus

M PI Ser cosL oopStatus

t ypedef enum {
MPI Ser cosLoopSt at usOPEN,
} MPI SercosLoopSt at us;

Description Ser cosL oopStatus defines the status of a SERCOS loop.

See Also

http://support.motioneng.com/soft/sercos/DataType/lopsts1.htm [3/12/2002 2:34:58 PM]

MPISercosMessage and MEISercosMessage

MPI SercosMessage / MEI SercosM essage

M PI Ser cosM essage
t ypedef enum {

MPI Ser cosMessageSERCOS | NVALI D,
MPI Ser cosMessageHANDSHAKE TI MEQUT,
MPI Ser cosMessagel DN_FI ELD_| NVALI D,
MPI Ser cosMessageMST_RECEI VE_ERROR,
MPI Ser cosMessageNODE_NOT_FOUND,
MPI Ser cosMessagePROCEDURE _DATA | NVALI D,
MPI Ser cosMessagePROCEDURE ERROR,
MPI Ser cosMessagePROTOCOL_ERROR,
MPI Ser cosMessageRI NG_NOT_CLOSED,
MPI Ser cosMessageSAVMPLE _RATE | NVALI D,
MPI Ser cosMessageSERVI CE_CHANNEL _BUSY,
MPI Ser cosMessageSERVI CE_CHANNEL _ERROR,
MPI Ser cosMessagePROCEDURE_TI MEQUT,
MPI Ser cosMessageM BUSY_TI MEQUT,
} MPI Ser cosMessage;

Description
M PI Ser cosM essageSERCOS _INVALID
M eaning The specified SERCOS ring is not valid.

Possible Causes A number passed to MPISercosCreate() is larger than the maximum allowable
number of Sercos objects.

Recommendations If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

M PI Ser cosM essageHANDSHAKE_TIMEOUT

Meaning A timeout has occurred during a SERCOS service container operation.

Possible Causes If there is some sort of communication error, the handshaking will probably not be
synchronized, and atimeout will occur.

Recommendations If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

M Pl SercosM essagel DN_FIELD_INVALID

Meaning A user istrying to read an IDN field that does not exist.

Possible Causes This error occurs when the user istrying to read the Min or Max IDN field on an IDN
whose datais Variable.

Recommendations If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

M PI SercosM essageM ST _RECEIVE_ERROR

Meaning .The wrong data type is being used to access an IDN field.

Possible Causes This error occurs when the user istrying to read the Min or Max IDN field on an IDN
whose datais Variable.

Recommendations .If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

http://support.motioneng.com/soft/sercos/DataType/mes3.htm (1 of 2) [3/12/2002 2:35:03 PM]

MPISercosMessage and MEISercosMessage

M PI SercosM essageNODE_NOT_FOUND

Meaning The specified Node number isinvalid.

Possible Causes In the phase 2 transition, if a Node in the Sercos ring has a node number that is greater
than the MEIXmpSercosNodeCountMAX, this error will occur.

Recommendations .If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

M PI Ser cosM essagePROCEDURE_DATA_INVALID

Meaning The wrong data type is being used to access an IDN field.
Possible Causes This error occurs when the user istrying to read the Min or Max IDN field on an IDN
whose datais Variable.

Recommendations .If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

M PI SercosM essageM ST _RECEIVE_ERROR

Meaning The wrong data typeis being used to access an IDN field.

Possible Causes This error occurs when the user istrying to read the Min or Max IDN field on an IDN
whose datais Variable.

Recommendations .If you are receiving this error message, then please contact an applications engineer at
Motion Engineering, Inc.

M El Ser cosM essage

t ypedef enum {
MEl Ser cosMessage BUFFER_SI ZE ERROR,
} MEI Ser cosMessage;

Description
M EI SercosM essageBUFFER_SIZE_ERROR
Meaning Thereis no memory allocated for a given SERCOS object.

Possible Causes When mpiSercosValidate() is called and the firmware does not have any space
allocated for SERCOS.
Recommendations Make sure the controller has been configured for SERCOS.

See Also

http://support.motioneng.com/soft/sercos/DataType/mes3.htm (2 of 2) [3/12/2002 2:35:03 PM]

MPISercosProcedureAction

M PI SercosProcedureAction

M Pl Ser cosPr ocedur eAction

t ypedef enum {
MPI Ser cosPr ocedur eAct i onl NVALI D,

MPI Ser cosPr ocedur eAct i onCLEAR_AND_START,
MPI Ser cosPr ocedur eAct i onSTART,

MPI Ser cosPr ocedur eAct i onCANCEL,

MPI Ser cosPr ocedur eAct i onSTATUS,

MPI Ser cosPr ocedur eAct i onCLEAR_AND EXECUTE,
MPI Ser cosPr ocedur eAct i onEXECUTE,

MPI Ser cosPr ocedur eAct i onNONE,

} MPI Ser cosProcedur eActi on;

Description Ser cosProcedureAction lists al of the different commands that can be applied to a
SERCOS procedure.

See Also

http://support.motioneng.com/soft/sercos/DataType/procacnl.htm [3/12/2002 2:35:08 PM]

MEISercosServiceContainer

M E| SercosServiceContainer

M EI Ser cosSer viceContainer

t ypedef struct MEl SercosServi ceCont ai ner {

unsi gned | ong header [5] ;
unsi gned | ong wite[20];
unsi gned | ong read[20] ;
unsi gned | ong r eadOver hang;
} MEI Ser cosServi ceCont ai ner
Descri pti on Ser cosServiceContainer is part of the Sercos message where noncyclic datais requested

and sent. It residesin both the AT and MDT.
See Also For a definition of the individual fields, consult a SERCOS specification manual.

http://support.motioneng.com/soft/sercos/DataType/srvcnr2.htm [3/12/2002 2:35:10 PM]

MPISercosStatus

M Pl SercosStatus

M PI Ser cosStatus

t ypedef struct MPlI SercosStatus {
MPI Ser cosLoopSt atus | oopSt at us;

| ong phase;
| ong nodeCount ;
} MPI SercosSt at us;
Description Ser cosStatus gives the status of the SERCOS ring.
loopStatus the current state of the ring (ie open or closed)
phase the phase in which the SERCOSring isin [0-4]
nodeCount the number of nodes on the SERCOS ring

See Also

http://support.motioneng.com/soft/sercos/DataType/sts1.htm [3/12/2002 2:35:15 PM]

MPISercosNODE_COUNT_MAX

MPI SercosNODE_COUNT MAX

M Pl Ser cosNODE_COUNT_MAX

#define MPI Ser cosNODE_COUNT_MAX (32)

Descri ption SercosNODE_COUNT_MAX defines the maximum number of Nodes that can be on a

SERCOS ring.
See Also

http://support.motioneng.com/soft/sercos/DataType/ndcntmax4.htm [3/12/2002 2:35:24 PM]

mpiSercosNodeldnDataSET

mpi SercosNodel dnDataSET

Declar ation

#def i ne npi Ser cosNodel dnDat aSET(ser cos, node, i dn)
npi Ser cosNodel dnFi el dSet ((sercos), (node), (idn), MPIIdnFi el dDATA)

Required Header stdmpi.h

Descri ption SercosNodel dnDataSET writes the data fields from an idn object to an idn on a sercos
node.

See Also

http://support.motioneng.com/soft/sercos/Method/ndidndtaset4.htm [3/12/2002 2:35:28 PM]

mpiSercosNodeldnGET

mpi SercosNodel dnGET

Declar ation

#defi ne npi Ser cosNodel dnGET(ser cos, node, i dn)
npi Ser cosNodel dnFi el dGet ((sercos), (node), (idn), MPIIdnFiel dALL)

Required Header stdmpi.h

Description SerocsNodel dnGET reads all the fields from idn located on a sercos node and writes
them into the idn object.

See Also

http://support.motioneng.com/soft/sercos/Method/ndidnget4.htm [3/12/2002 2:35:31 PM]

Sercos- Introduction

Sercos- Introduction

About SERCOS | Supported Drives

About the MEI SERCOS Controller

(&) Top

The SERCOS/XMP Series controllers from MEI are an extension of the XMP Series motion
controllers. XM P Series motion controllers support analog motion control outputs, encoder
inputs, and discrete digital 1/0. SERCOS/XMP Series motion controllers replace these signals
with the SERCOS digital fiber optic network interface. The SERCOS interface only requires
two fiber optic connections (one output and one input) to connect to a fiber loop containing
up to 8 axes of motion.

Both SERCOS and standard XMP Series controllers share the same basic hardware
architecture, onboard firmware, host software and many other features. So, for controller
installation procedures, Motion Console application and C programming information, use the
XMP s standard documentation.

However, because the SERCOS IDNSs are actually implemented in the drive (and not in the
controller), there are many SERCOS functions not documented in the XM P documentation,
because they are in the drive’ s documentation (because these functions are associated with the
drive and not the controller). Motion Engineering adheres to the specifications set forth by the
IEC concerning SERCOS. For more information regarding SERCOS or the SERCOS
specification, please contact SERCOS N.A at www.Sercos.com.

Supported Drives / Modules

(&) ToP

MEI currently supports drive and 1/0 modules from avariety of manufacturers. If you desire
support for adrive or I/0 vendor not listed, please contact MEI.

Manufactur er Device

Indramat Servo Drives
Modicon Servo Drives

Lutze Digital 1/0 Modules
Pacific Scientific Servo Drives
Kollmorgen Servo Drives

Sanyo Denki Servo Drives

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

(&) vext

Copyright @ 2002
Motion Engineering

http://support.motioneng.com/soft/zSercos/scs_intro.htm (1 of 2) [3/12/2002 2:37:03 PM]

http://www.sercos.com/

Sercos- Introduction

http://support.motioneng.com/soft/zSercos/scs_intro.htm (2 of 2) [3/12/2002 2:37:03 PM]

Sercos-Overview

Sercos- Overview

Summary | Operation Modes | Closed-Loop Tuning | Data Transmission

Summary
SERCOS (SErial Real-time COmmunication System) is the international standard for optical communication
between motion control units and drive modules. It was developed by the International Electrotechnical
Commission (IEC) specifically for motion control and is defined by the IEC 1491 standard. SERCOS
supports data rates up to 16 Mbits/sec over afiber optic ring. Data can be transmitted deterministically in real
time based on the loop update rate (cyclic), or at lower bandwidths for less critical operations (non-cyclic). A
SERCOS-compatible communication ring must have a single controller (master) and 1 - 254 drive or I/0
modules (slaves).

Also, data communication can be performed in either a synchronous or asynchronous manner. The protocol
allows the user to configure the communication telegrams to send whatever datais appropriate synchronously.
Data that has not been configured to reside in the communication telegrams can be sent or retrieved
asynchronously by use of a Service Channel contained within the communication telegrams. Generaly,
synchronous datais data that is critical to real-time operation (e.g., command and feedback data, status).

SERCOS isaunidirectional serial communications protocol for connecting multiple drives (Slaves) to a
motion controller (Master) over afiber optic ring, in an industrial environment. The control and status
information is organized into telegrams, and travelsin a serial data stream around the SERCOS ring. Al
messages are synchronized according to the SERCOS cycle time, the timing of which is configured during
initialization by the Master. Each Slave on the ring repeats the telegrams sent to it, sending them to the next
device on thering, and inserting its own telegram into the designated time slot in the serial data stream.

Starting at the output port of the Master, the devices are connected in the ring in a daisy-chain fashion,
connecting from the output port of one deviceto the input port of the next device, and so on, until thering is
closed back at the input port of the Master. Up to 254 drives can be connected on a SERCOS ring, athough
the systems requirements for update rates and data will usually limit the number of devices to many fewer
than that. SERCOS networks can operate at 2, 4, 8 or 16 Mbit/sec. Maximum distances from input port to
output port can be 60 meters (plastic fiber) to 250 meters (glass fiber).

Using multiple SERCOS rings, a motion confrol system
can be designed to almost any size or requirement.

I Control Unit
The Master controls and initiates &
all communication on the . =" 7" gyt | Master #1 I I . .# - |Master#1] & - .
SERCOS ring. F) 1 L t n e
rl 1\ ,: '.r I|II|
: SERCOS Optical Ring i ' !
‘-u] . ¥
QT oUT ouT/ “.. :
Messages and information N - M - B ' & -
are organized into
telegrams and travel in Drive Slaves I:I

_] |]
one direction only.
Maotor Encoder @ M @

http://support.motioneng.com/soft/zSercos/overview.htm (1 of 4) [3/12/2002 2:37:18 PM]

Sercos-Overview

Operation Modes

&) o

The SERCOS communication interface supports three main operation modes (Torque, Velocity and Position).
The operation mode defines the real-time digital messages sent between the controller and the drive(s).

Mode ToDrive To Controller

Torque 16 bit Command Torque 32 bit Actual Position
Velocity 32 bit Command Velocity 32 bit Actual Position
Position 32 bit Command Position 32 hit Actual Position

In addition to the main operation modes SERCOS supports severa variations. Since the communication
interface is determined by the firmware/software in the controller and the firmware/software in the drive, the
real-time datais configurable.

Currently the SERCOS/XMP Series firmware/software supports several operation modes. Some operation
modes are drive specific while others are drive independent. Motion Engineering is constantly testing and
certifying compatibility between our controller and SERCOS-compatible drives.

Most drives support the three main operation modes (Torque, Velocity and Position). Please consult your
drive specific documentation regarding supported operation modes and variations.

In all modes, the controller calculates a 32-bit command position every sample. The command position is
based on the current command jerk, command accel eration and command vel ocity.

In Torque mode, the controller sends a 16-bit command torque to the drive. The drive sends a 32-hit actual
position back to the controller. Every sample, the controller calculates a new command torque based on the
position error and the control agorithm. The controller closes the position and velocity loop and the drive
closes the torque loop.

In Velocity mode, the controller sends a 32-bit command velocity to the drive. The drive sends a 32-hit actual
position back to the controller. Every sample, the controller calculates a new command velocity based on the
position error and the control algorithm. The controller closes the position loop, and the drive closes the
velocity and torgue loop.

In Position mode, the controller sends a command position to the drive. The drive sends a 32-bit actual
position back to the controller. Every sample, the controller calculates anew command position. The drive
closes the position, velocity and torgque loop.

Closed-Loop Tuning

A general difference between SERCOS digital drives and conventional analog drivesisthat digital drives
have on-board intelligence and can close position or velocity loops within the drive. In al operation modes,
“tuning” requires setting parametersin the drive and the controller. Thus, an understanding of both the
controller and drive control agorithm is necessary for successful drive tuning.

The controller tuning parameters can be set using Motion Console (for Windows-based systems). For more
information on the controller’ s tuning procedures, please consult the Tuning section in the XMP Motion
Controller Hardware Installation manual.

The drive’ stuning parameters must be set via IDNs, and the values are determined from information supplied
by the drive manufacturer. Please consult the drive-specific documentation for more information on the

drive’ s tuning parameters. While Motion Engineering has considerable experience with the listed drives and
can generally offer tuning guidelines for drive parameters, difficult tuning situations may require support from
the drive vendor or manufacturer.

http://support.motioneng.com/soft/zSercos/overview.htm (2 of 4) [3/12/2002 2:37:18 PM]

Sercos-Overview

In Velocity mode, the controller’s CONTROL ALGORITHM output controls the motor’ s vel ocity.
Therefore, the drive’ s velocity loop must be tuned and the controller’ s position loop must be tuned. The
tuning procedure isidentical to a standard analog output XM P Series controller connected to a
velocity-controlled amplifier. Note that the controller’s Velocity Feed Forward term is very useful in
velocity-controlled systems.

In Position mode, the controller’s control algorithm is not used. The driveis responsible for the closed loop
control. Therefore, the drive’ s velocity and position loop must be tuned. The controller’ s tuning parameters
have no effect on the system’ s response.

Data Transmission

SERCOS
Cycles

Telegrams

Data
Records

SERCOS supports two types of data transmission, cyclic and non-cyclic.

Cyclic dataisthe critical real-time synchronized data sent between the Master and the Slaves (drives, 1/0
modules). In every SERCOS cycle, the Master sends and receives fixed-length messages to the drives and |/O
modules. These messages contain the motion control command signal and the feedback response for each
drive or the digital 1/0 commands and responses for each I/0O module. The cyclic datais guaranteed to reach
each drive and 1/0 module and return to the Master at afixed time interval, the SERCOS cycle.

Non-cyclic datais the noncritical asynchronous data. The cyclic fixed-length messages have space (called the
Service Channel) reserved for non-cyclic data. In each SERCOS cycle, the Master may transmit two bytes of
non-cyclic data through the Service Channel to each Slave. Note that it may require several SERCOS cycles
for the Master to complete the transmission of the non-cyclic data to the Slaves. Typically, transmitting
non-cyclic datais much slower than cyclic data.

SERCOS cycles are built using telegrams, which in turn contain data records for all of the Slave drives. Cyclic
dataistransferred in the cyclic data part of the data records. Non-cyclic datais transferred in the Service
Channel of data records. Refer to the next figure.

[st] | oar | a2 b oos | oAt | | MDT | | wmst ||
\v I
rff 7
= 2 = -E =1 E E 5
wls g o e 5 85| O (= '-"":JJ-E 85 25 L
=2 & |3 AZ|53 & |2 2J=|88- 33~ ;|83 2 |2
1]
@ E Eal 4 =]
FE[Ez| g8 SE|FE| o=
| — | L1
Service Channal Service Channel N

http://support.motioneng.com/soft/zSercos/overview.htm (3 of 4) [3/12/2002 2:37:18 PM]

Sercos-Overview

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

@ next

Copyright @ 2002
Motion Engineering

http://support.motioneng.com/soft/zSercos/overview.htm (4 of 4) [3/12/2002 2:37:18 PM]

Sercos-Data Types

Sercos- Data Types

Summary | Data Block Structure | Data Block Structure of IDNs
= Element 1. IDNumbers

= Element 2: Name of Operation Data

= Element 3: Attributes of Operation Data

= Element 4: Operation Data Unit

» Element 5: Minimum Input Value of Operation Data
= Element 6: Maximum Input Vaue of Operation Data
= Element 7: Operation Data

Summary
And datas in a lave that can be accessed by the host is represented by a data block. Data
blocks are assigned identification numbers (IDNs or “1D numbers’). The data block consists
of information about the data; for example, IDNumber, name, attributes, units, min and max
values, and the operation data itself.
(&) ToP

Data Block Structure

The SERCOS protocol is designed to handle many different types of data, characterized by
two fundamental types: fixed length data and variable length data.

Fixed length datais either 2 bytes or 4 bytes wide and can be used to represent signed or
unsigned integers, hexadecimal values, binary codes, IDNumbers (identification numbers) of
other Data Blocks, and procedure commands.

The length of variable length data depends on what type of datais present, and is defined by
the first two words (32 bits), which specify the actual and maximum length of the data.
Variable length data can be used to represent character strings, lists of IDNumbers of Data
Blocks, lists of signed or unsigned integers (both 2 or 4 bytes wide), lists of hexadecimal
values, etc.

All data (fixed and variable length) can be sent or received via the Service Channel. However,
only fixed length datais allowed to be configured into a communication telegram (MDT,
AT). When acommunication telegram is configured to send or receive fixed length data, it is
only Element 7 datathat will be either sent or received.

&) TorP

http://support.motioneng.com/soft/zSercos/dta_typs.htm (1 of 6) [3/12/2002 2:37:22 PM]

Sercos-Data Types

Data Block Structure of IDNs

Datais accessed through data blocks referred to as IDNs. An IDN consists of seven elements:

Element 1
Element 2

Element 3
Element 4
Element 5
Element 6

Element 7

IDNumber

Name

Attribute

Unit

Minimum Input
Maximum Input

Operation Date

All data exchanged between Master and Slaves has an IDNumber (IDN number) assigned to
it. Every IDN has an associated data block which consists of seven elements. The Master can
only write Element 7 data; the Master cannot write Elements 1 - 6. Elements 1 - 6 are defined

by the drive itself.

Element Description

1 IDNumber
(Identification
number)

2 Name

3 Attribute

4 Unit

5 Minimum input
value

6 Maximum input
value

7 Operation Data

(&) T0P

Data Type

binary

Expressed as either S X-XXXX or
P-X-XXXX. S denotes IDNs that are defined
by the SERCOS Specification. P denotes IDNs
that are defined by the manufacturer of the
device.

variable length string
Contains the name of the IDN.

32 bit binary

Contains information about conversion factors
and data representation (signed or unsigned
integer, fixed or variable length data, etc.)

variable length string
Contains a representation of the units for the
data.

1 or 2 words

1 or 2 words

1 or 2 words, or string

http://support.motioneng.com/soft/zSercos/dta_typs.htm (2 of 6) [3/12/2002 2:37:22 PM]

Sercos-Data Types

Element 1. IDNumbers
Each Data Block has a number assigned to it for identification purposes, called the IDNumber. The
IDNumber is represented as either S-X-XXXX or P-X-XXXX. S denotes aData Block that is
defined by the SERCOS Specification. P denotes a Data Block that is defined by the manufacturer.
Thefirst ‘X" identifies the “data set” that the Data Block belongsto. According to the SERCOS
Specification, it is possible to switch between data sets.

X -y - 2227

o4

VIV IY Z|2|Z|Z raid) 4] Bt re B b s

| | 1 1
Parameter Set Data Block Number

D:llta Block Humber

Parameter Set ype of IDM
ype of IDM
Bits Name Values
15 Type of IDN 0 S- Standard data

1 P - Product-specific dataasthe S’ or “P”
part of the IDN notation S-y-zzzz or P-y-zzzz.

14-12 Parameter Set 0-7,asthe"y” part of the IDN notation
Sy-zzzz or P-y-zzzz.

11-0 Data Block Number 0 - 4095, asthe “zzzz" part of the IDN notation
Sy-zzzz or P-y-zzzz.

(&) ToP

Element 2. Name of Operation Data
The name of operation data is 64 bytes maximum, with 2 length specifications of 2 bytes
each, and a character string of 60 characters maximum. Bytes 1 and 2 contain the number
of charactersin the text. Bytes 3 and 4 contain the maximum number of charactersin the
text. Since this element is READ-Only, bytes 3 and 4 will contain the same values as bytes

1and 2.

Length of Mame in bytes

Bytes 1, 2 .

f 1 f 0 EGW{ES 1 B}'i&"iﬂﬂ'-ﬁﬂ
TITT[? Byte 2 iz alwayz 0
J0 00 Name (Text) Byte 3 is 0 - 60

e Byte 4 is alwaysz 0
Bytes 3, 4
@ Tor Max available Length of Name in bytes

Element 3: Attributes of Operation Data

Every data block has an attribute (4 bytes) which contains all of the information required to
display operation data, using universal routines. If data needs to be scaled (to be displayed), then
specific scaling parameters are supplied in the attribute.

http://support.motioneng.com/soft/zSercos/dta_typs.htm (3 of 6) [3/12/2002 2:37:22 PM]

Sercos-Data Types

23 19)
31 - 28 27 - 24 22-20 18 - 16 15-0
4 byies rrrr r
| 1 1 | | 1 | 1L
Reserved Decimal Data Conversion factor
oint length
Diata type / Display format Diata function
Bits Name Values
31 Reserved
30 Phase 4 write-protection
bit. 1 = write-protected

29 Phase 3 write-protection
bit.

28 Phase 2 write-protection
bit.

27-24 Number of places after
the decimal point
Indicates the position of
the decimal point in the
data to be displayed.
Basicdly, it'sthe
exponent “x” in 10-x.

23 Reserved

22-20 DataType& Display Data Type
Format Used to convert 000 binary number Display For mat
the operation data, and 001 unsigned integer binary

1 = write-protected

1 = write-protected

000 No places after decimal point
001 1 place after decimal point

010 2 places after decimal point *
111 15 places after decimal point

min/max input valuesto 010 integer unsigned decimal
the correct display 011 unsigned integer ~ signed decimal hexadecimal
format. 100 extended char set text
101 unsigned integer ~ IDN number
010 Reserved
111 Reserved
19 Function of Operation
Data
Idndlcates whether th's. 0 Operation data or parameter 1 Procedure command
ata calls aprocedurein
adrive

http://support.motioneng.com/soft/zSercos/dta_typs.htm (4 of 6) [3/12/2002 2:37:22 PM]

Sercos-Data Types

(&) Tor

18-16 DatalLength 000 Reserved
h | hi 001 Operation datais 2 byteslong
VIE _data ST 010 Operation datais 4 bytes long
required so that the 011 Reserved
M ast?r IS able_to 100 Variable length with 1-byte data strings
cohmp ete Service 101 Variable length with 2-byte data strings
Channel datatransfers 110 vgriable length with 4-byte data strings
correctly. 111 Reserved
15-0 Conversion Factor An unsigned integer used to convert numeric data to

display format. Is set to 1 when it is not needed for data
display (e.g., binary display or a character string).

Element 4. Operation Data Unit

(&) ToP

The operation data unit is 16 bytes maximum, with 2 length specifications of 2 bytes each,
and a character string of 12 characters maximum. Bytes 1 and 2 contain the number of
charactersin the text. Bytes 3 and 4 contain the maximum number of charactersin the text.
Since this element is READ-Only, bytes 3 and 4 will contain the same values as bytes 1 and
2.

Length of Mame in byles

Bytes 1, 2 §
I 1 I 0- 12 bytes 1 Byie 1 is low byte
Tal 5 Byie 2 is high byie
I ir'I 1 Ii-" Unit (Text) Byie 2 is low byte
— Byte 4 is high byte
Bytes 3, 4

Max available Length of Unit in bytes

Element 5: Minimum Input Value of Operation Data

(&) 0P

The minimum input value is the smallest numerical value for operation data that the drive can
process. When the Master writes a value to the drive that is less than the minimum value, the
drive ignoresit and continues to use the previous operation data.

When the operation datais of variable length or a binary number is used, there isno minimum
input value of operation data.

Element 6: Maximum Input Value of Operation Data

(&) 0P

The maximum input value is the largest numerical value for operation data that the drive can
process. When the Master writes a value to the drive that is more than the maximum value, the
drive ignoresit and continues to use the previous operation data.

When the operation datais of variable length or a binary number is used, there is no maximum
input value of operation data.

http://support.motioneng.com/soft/zSercos/dta_typs.htm (5 of 6) [3/12/2002 2:37:22 PM]

Sercos-Data Types

Element 7. Operation Data
In terms of length, there are 3 types of operation data:

o fixed length with 2 bytes
o fixed length with 4 bytes
o variablelength up to 65,532 bytesin 1 byte (char), 2 byte, or 4 byte values
Bytes 1 and 2 contain the number of bytesin the text. Bytes 3 and 4 contain the max number
of bytes available in the text. Data in the text may be 1 byte, 2 bytes, or 4 bytes wide.
Length of Operation Data

In bytes 0 - 60 byte
. yies)
Bytas 1, 2 ified tes 3 4 Byte 1 is low byle
"¢ —{asspecliedbybytes3.4) gite 2 s high byte
TATTT 7 Byte 3 is low byle
0,10 Name (Text) Byte 4 is high byte
L1
Bytes 3, 4 Length iz from

Max available Length of Operation Data in byles 1 1o 65,532 (FFFCH)

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

@ next

Copyright @ 2002
Motion Enginesring

http://support.motioneng.com/soft/zSercos/dta_typs.htm (6 of 6) [3/12/2002 2:37:22 PM]

Sercos-Communications

Sercos- Communications

Synchronization | Ring Timing | Initialization

Synchronization
The Master isresponsible for sending a synchronization telegram (MST) at the beginning of each communication
cycle. All Slaves (drives) will receive the MST and reset their clocks. In thisway, al Slaves will run in phase lock
with the Master’s clock. Because all Slaves arein phase lock with the Master’ s clock, commands can be made
activein al of the Slaves at the same instant. This means that the Master can coordinate motion between all axes
without propagation effects distorting the motion profile. Feedback from the Slavesis handled in a similar manner,
and islatched in al Slaves at the same instant.

@ mor

Ring Timing
Datais sent and received by the Master and Slaves through communication tel egrams. The communication telegrams are
organized over the SERCOS cycle in the manner shown in the next figure.

The SERCOS ring timing is based on the data to be placed in the telegrams (AT, MDT), and on 6 drive parameters that are
determined by the type and features of a drive (or drives), and 6 parameters that are written from the Master, with some of
these parameters derived or calculated from the drive' s timing parameters. The times at which the MDT and AT are sent
(relative to the sending of the MST) are determined by the Master and sent to the Slaves during initialization.

During Phase 2, the Master reads parameters from the drives that determine what and when the drives are able to transmit and
receive. Using thisinformation and the desired telegram contents, baud rate and cycle time, the Master determines the timing
and telegram parameters for each drive. The Master then writes these parametersto the drives.

T4=T Scyc-T_5 Min Feedback Froc Time
o) ODRINE
—
T Ay Feedback Acquisition Capture Point =I ' T5
T4 signals the start of feedback processing, and T4 must occur
must occur sothat there is enough time for pro- before T_5 Starts
cessing to finish before the end of the next MST.

Gontrol Unit Cycle Time J
T_Meyc HCETT) T Neye=n"T Syc (n=1,2,3.) "
Comm Cycle Time
T_Seye HCEZZO o =)
MDT Starting Time Tinning wiritten by Master
N o ST
= T_22T1,+ T_ATMT, ;_22:2 Sha
e AT 1 LS
Starfing Time T3 50-8
DRIVE DRIVE DRIVE oo J 4 ant
s -[Zo5] e[S -
[MmsST] [AT0] [AT1]| [AT,] [mDT [msT|
Ty —-1@ T aTaT Xz
T11 B - Tll‘nlﬁg that s determined
T1n AT Tx Starting Times ORIVE byt Dirinve
T 1 50-3
T, T1_min, =] s sos
Ta-toeTe Transilon Time T ATAT S-087
T_ATMT S0«
e EE T3 must acour T_MTSY S088
T_32T_2+ TMTSG + MDT Tx time Tams el | TIMTSG 50490
TMTSE and bakm
i Vakie Vakd Time akart of nexd
T—B == T3 sgrals the time when e commands are valid MST

' MDT Tx #ma degends on fe number of daves and the amount of data sant
o the slaves. The Masber must calculate the MOT Txtime duing Phase 2

For a print-friendly version of the above diagram, click here.

@ Tor

http://support.motioneng.com/soft/zSercos/comm.htm (1 of 4) [3/12/2002 2:37:24 PM]

http://support.motioneng.com/soft/zSercos/scs_19_vert_gif.htm

Sercos-Communications

Initialization

Before true synchronous data transmission can occur, the system must first be initialized. This is done through a
series of communication phases (or just phases) in which dataisfirst transmitted asynchronously. The data
transmitted during these early phases is used to configure the Master and Slaves for synchronous data
transmissions in later phases. The SERCOS protocol defines five phases.

Phase Name Action
0 Ring Verification Master verifiesring closure
1 Device Verification Master verifies devices on ring
2 Telegram Set-Up Master reads timing data from slaves and
sets up telegram timing
3 Device Parameterization Master continues to configure devices
4 Cyclic Operations Master commands devices cyclically

On power-up, each drive or I/0 module begins an initialization sequence. At thistime, each drive and I/O module
operates as a repeater, by simply passing received telegrams to the next device on the SERCOS ring.

The Master isonly allowed to set the communication phase to the next logical communication Phase (Phase 0 ->
Phase 1 -> Phase 2 -> Phase 3 -> Phase 4) or directly back to Phase 0. If at any time the Master attempts to
switch a Slave into a Phase that is not the next logical Phase, then the Slave will immediately return to Phase O. If
at any time the Slave receivestwo invalid MSTs or MDTs consecutively, the Slave will also switch to Phase 0.
Phase O:

Ring Verification

.

e

Master

The Master sends
* svelronizaiion fele-
« grams (MSTE) o
« the slaves

MET i senr 1O fimes.

| ol nl ol
|

b | b |
IEI

During Phase 0 no data is exchanged between the Master and the Slaves. All Slaves must bein “repeater” mode.
This means that each Slave will retransmit any signal that it receives. In order to verify that the communications
ring is intact and capable of sending telegrams, the Master begins sending Master Synchronization Telegrams
(MST) through the SERCOS ring.

The Slaves (drives) simply pass the MST to the next drivein the daisy-chained ring, and eventually because of the
ring topology, the MST returns to the Master (i.e., Master will receive its own MST). Phase 0 is completed when
the Master receives 10 consecutive MSTs. After the tenth consecutive M ST, the Master changes the phase
information in the MST to 1, which commands all Slavesto switch into Phase 1 operations.

Phase 1:

*£--an

o

e L5 -
Device Veriffcation Mastar

The Master addresses and
*, lalks with each Slave sep-
Y arately, to verify that all
+ target slaves are present
- and online.

100 - 300 psec

I 500 - 700 psec |
| al _q k_ al al
i | | |
B bALYL I [".-1.5 I | o | 115 I [".-1.5 I Al WD I Ihihll I~ M&
Drive Drive Dirive Drrive Drive Dirive
Address 1 Address 1 Address 2 Address 2 Address 3 Address 3

http://support.motioneng.com/soft/zSercos/comm.htm (2 of 4) [3/12/2002 2:37:24 PM]

Sercos-Communications

During Phase 1, the Master sends out an MDT with the address of a specific Slave in the system. If present within
the system, the Slave with the specified address responds by sending an AT back to the Master. The AT that is sent

isrudimentary and isintended solely as a confirmation that

the addressed Slave isin the system. The Master then

repeats this query for all target Slaves. (Note that not al Slavesin the system will be target Slaves. Target Slaves

are chosen by the application before initialization begins.)

When the Master receives an AT from each target Slave (in response to a query), the Master changes the phase
information in the MST to 2, which commands al Slavesto switch into Phase 2 operations.

Phase 2:

TELEGRAM SET-UP

Master

I

I 500 - 700 psec I
1

LY

The Master addresses and reads drive
parameters from each Slave separately.
» Uszing each drive's data, the Master
\ calculates and then writes timing para-
. meters to each Slave separately, that
tell each Slave where to insert their ATs
in the SERCOS cycle, and where o
find their Data Record in the MOT.

N

[zoT] | i |
Read
Slawve 1
Data

Read Read
Slave 1 Slave 2
Crata Data

During Phase 2, the Master sets up the configurable data portion and cal culates the duration and time slots within

the SERCOS cyclefor all telegramsto be used in Phases 3

and 4. The Master also determines the slave operation

mode for al Slaves. In order to do this, the Master requires certain data from the Slaves. The Master obtains this
data by sending an MDT addressed to a specific Slave, that usesthe MDT’ s Service Channel to query the Slave for

the required data

The Slave responds by sending an AT containing the appropriate data, in the AT’ s Service Channel. Once the
Master has determined all parameters, it sends them to each Slave viathe MDT’ s Service Channel. In Phase 2, the

Service Channel is activein both MDTsand ATSs.

Once dll datais transmitted to the Slaves, the Master will initiate the Communication Phase 3 Transition Check

S-0-127 procedure for each Slave.

The Communication Phase 3 Transition Check checks the validity of all the data, and if al the datais valid, then
the procedure executes successfully. If any datais not valid, the procedure fails and the IDN number of theinvalid
dataisplaced in IDN-List of Invalid Operation Datafor CP2 S-0-21.

After all Slaves have completed the procedure successfully, the Master changes the phase information in the MST
to 3, which commands all Slaves to switch into communication Phase 3.

Phase 3:

Device Parameterization

am"

Master

All communication telegrams are
now valid. To continue configuring
the drives, the Master writes app-
lication commands and parameters
owver the Service Channel.

ATs and MDTs are sent cyclically,
but cyclic data is not valid.

ul ol ul |
bl | jad | bl | |

http://support.motioneng.com/soft/zSercos/comm.htm (3 of 4) [3/12/2002 2:37:24 PM]

Sercos-Communications

@ Tor

In Phase 3, the real-time synchronous and asynchronous communication starts, and the Master uses the Service
Channel to configure and parameterize (write parameters to) the Slaves. The parameters set in Phase 3 are
application-oriented (e.g., conversion factors). During Phase 3, all communication telegram parameters sent in
Phase 2 become active. Note that although Configurable Data (in ATs and MDTS) is present in the communication
telegrams, some of that Configurable Data may not be valid until Phase 4.

The Master will still send the MST at the beginning of the SERCOS cycle, but will now also send an MDT with a
global address at a specific time (all Slaves will receive aglobal telegram). Each Slave will transmit its AT during
its specified time slot. The communication telegrams now contain the Control/Status Word, a Service Channel, and
the Configurable Data.

When the Master has finished sending parameters to the Slaves, it will initiate the Communication Phase 4
Transition Check S-0-128 procedure for each Slave.

The Communication Phase 4 Transition Check checks the validity of all the data, and if all the dataisvalid, then
the procedure executes successfully. If any datais not valid, the procedure fails and the IDN number of theinvalid
dataisplaced in IDN-List of Invalid Operation Datafor CP3 S-0-22.

If the Communication Phase 4 Transition Check executes successfully and the Phase information in the MST is
equal to 4, the Master switches the drives to Phase 4.
Phase 4:

Cyclic Operations

Master

Diive initialization is finished
Cyclic data in MDTs and ATs are
now valid. The drives can now be
enabled and commanded.

ol M|
| "

v o SRS F v v s MR N s W o T N i v W s

In Phase 4, afinal verification of error-free drive operation is completed. This completes the drive initialization.
The SERCOS communication loop is now operational. During Phase 4, all Control/Status words, Service
Channels, and Configurable Data (in ATsand MDTs) are valid for the target Slaves. The Slaves (drives) are ready
to follow commands when enabled. Diagnostics (errors, warnings, status) are enabled.

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

@ nexr

Copyright & 2002
Motion Enginesring

http://support.motioneng.com/soft/zSercos/comm.htm (4 of 4) [3/12/2002 2:37:24 PM]

Sercos-Procedures

Sercos- Procedures

Summary

@ Tor

Many Slaves (drives) come with preprogrammed procedures that the Slave is able to execute
without assistance from the Master. Each of these procedures is assigned a Data Block. The
Master controls a procedure by reading and writing to Element 7 of the procedure’ s Data
Block. The Master can initiate, interrupt, or cancel a procedure at any time by setting or
clearing bitsin Element 7 of the procedure’ s Data Block.

Bits 0 and 1 are responsible for respectively setting and enabling the procedure command.
Once set and enabled, the Slave will begin execution of the procedure. To indicate that the
procedure is executing, the Slave sets bit 2 of the procedure status word. When the procedure
has finished executing, the Slave clears bit 2 of the procedure status word and sets the
Procedure Command Change Bit in the Drive Status Word S-0-134. If an error has occurred
when executing the procedure, the Slave will set bit 3 of the procedure status word and will
also set the Procedure Command Change Bit in the Drive Status Word S-0-135. In either case
(successful execution or failure), the Master must cancel the procedure by clearing bits 0 and
1 of the procedure.

In SERCOS, in order for a Master to execute a procedure,

1. The Master writes 0x3 to Element 7 of the desired IDN procedure, which
sets and enabl es the procedure.

2. The Master reads the procedure status word and checks bits2 & 3 to see if
the procedure has finished executing or if thereisan error.

3. After reading that the procedure has executed, the Master writes 0x0 to
Element 7 of the particular procedure, which cancels the procedure.

Erom S 13 12 11 & 7 4 302 1 0
Master commangsy |01 0] 0]0| [0]0]0o] [o]ofo]o] [o]o

Interrupt preocedure execution L
Enable procedure execution 1

Cancel procedure 0
Set procedure 1

15 12 11 o 7 4 i 02 1 u

From READ |p | p|l0]|0 0/0|0 oloflol|o
Slave LSttus)

Operation data is valid L
Operation data is not valid 1
Mo procedurs emor
Error: procedure cannot execute 1

Procedure executad corractly
Procedure not yet executed 1

Procedure execution interrupted in drive O
FProcedure execution enabled in drive 1

Procedure not set in drive (by Master) 0
Frocedure set in drive 1

http://support.motioneng.com/soft/zSercos/procedures.htm (1 of 2) [3/12/2002 2:37:29 PM]

Sercos-Procedures

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

@ next

Copyright @ 2002
Motion Engineering

http://support.motioneng.com/soft/zSercos/procedures.htm (2 of 2) [3/12/2002 2:37:29 PM]

Sercos-Telegrams

Sercos- Telegrams

Summary | BOF Delimiter | ADR Target Addresses | Message Field
FCS (Frame CHeck Sequence) | EOF (End of Frame) Delimiter | Data Record
Master Synchronization Telegram | Master Data Telegram | Amplifier Telegram

Summary

The controller (Master) communicates with the drives and 1/0 modules (Slaves) using telegrams. A
telegram is a structure that contains data, error checking and handshaking information. SERCOS

supports three types of telegrams. Master Synchronization Telegram (MST), Master Data Telegram
(MDT), and Amplifier Telegram (AT).

Each type of telegram contains 5 types of fields: BOF (beginning of frame), ADR (address),
message field, FCS (frame check sequence), EOF (end of frame).

Appiication Dala e

= SERCOS “Overhesy” = |_ = SERCOS “Overfiead” o
Address :
BOF (ADR) Message Field FCS EOF I
1 byte 1 byte n bytes 2 bytes 1 bote

Telagrams travel in
ona direction only.

Each SERCOS cycle can be visualized

| Master as a stream of datattelegrams, where

@ - - devices insert their elegrams into the
Lemr | Master T stream at the propar time.
Rl) ,,
¥ 1) L
' o) = —
Slave 1 @ Slave 3| / \ \
AR CETE Each Si ds its
= 1 =) 2 - 3 ach Slave reads i
i | s kel I data record in each
Each Slave “seas” avery M3T Drive Drive I Dhwive I MLT.
and MOT transmitted. Each Slave

wailts unfil its proper ime to
its AT to the Master.
@ Tor

BOF Delimiter

All telegrams have a BOF (beginning of frame) byte denoting the beginning of the telegram. The
BOF isaways 0111 1110.

-]
4=
Led

i

1 byte

o
—
=y
=
=i
-y
-y
=}

MSE LS8

http://support.motioneng.com/soft/zSercos/telegrams.htm (1 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

ADR Target Addresses

All telegrams have an ADR (address) byte, which denotes the address of adrive (Slave). Ina
telegram from the Master, the address specifies which drive the information isfor. In atelegram
from a Slave (drive), the address specifies the sourcing drive. The target addresses for the drives are
valid if greater than 0 and less than 255. Typically, adrive' s addressis set using a selector located
physically on the drive.

Address O isthe “no station” address, and is sometimes used to remove adrive from the ring
logically, during troubleshooting. During non-cyclic operations (Phases O - 2), the Master can only
communicate with one drive per cycle. During cyclic operations (Phases 3, 4), the Master can
communicate with al drives.

From To Telegram Non-Cyclic Cyclic
(Phases 0,1,2) (Phases3,4)
Master Slave MST 255 255
Master Slave MDT 1<ADR< 255 255
Slave Master AT 1<ADR< 254 1<ADR< 254
7 4 3 0

broadcast address = 11111111
no-stafion address = 00000000g

MSBE LSB

(&) ToP

Message Field
Each Telegram (MST, AT, and MDT) contains a message field. The Message Field for the MST
consists of one 8-bit word. The lower three bits of the MST contain Phase information. The
Message Field for the AT consists of one Data Record. The Message Field for the MDT consists of
one Data Record if the MDT’ starget addressis a specific drive. If the MDT’s Target addressis all
drives (255), then the Message Field for the MDT consists of one Data Record per drivein the
system.

(&) Tor

FCS (Frame Check Sequence)

All telegrams have a two-byte FCS number used to check data integrity. The frame check sequence
(16 bits) isimplemented according to |SO/IEC 3309, 4.5.2.

15 12 L & T E i 0

2 bytes

MSE LEE

(&) ToP

http://support.motioneng.com/soft/zSercos/telegrams.htm (2 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

EOF (End of Frame) Delimiter

(&) ToP

All telegrams have an EOF byte denoting the end of the telegram. The EOF is always 0111 1110.

7 4 3 ¥
0111 111/1]0
MSB LS8

Data Record

(&) 0P

Data Records are used by both the Amplifier Telegram (AT), and the Master Data Telegram
(MDT) to send data. Generally, a Data Record consists of a 16-bit Control/Status word, a 16-bit

Service Channel, and a Data Block of 16-bit words.

Control/Status Service Channel Data Block

2 bytes 2 bytas Length configured in Phase 2

Amplifier Telegrams contain only one Data Record, because each Slave sends its own Amplifier
Telegram.

During Phase 2, the Master sends a Master Data Telegram that is addressed to a specific Slave.

Since only one Slave isto receive the MDT, the Phase 2 MDT has only one Data Record. During

Phases 3 and 4, the Master sends a Master Data Telegram that is received by all Slaves on the ring.

Since all Slaves receive the Master Data Telegram, the Phase 3-4 MDT has one Data Record for
each Slave.

During Phase 2, the Data Block in both the AT and the MDT has alength of 0. This means that all

data exchange between Master and Slave must take place using the Service Channel. Because the
Service Channel is only 16-bits wide, data exchange can take multiple cycles. Service Channel
exchange of dataisreferred to as non-cyclic.

During Phase 2, the Master is responsible for determining the data fields for the Data Blocks in the
Phase 3-4 AT and MDT. The size and number of datafields will determine the size of the Data
Block. Once defined in Phase 2, the fields and therefore the size of the Data Block is fixed. The

datafieldsin the MDT usually contain command data. The datafieldsin the AT usually contain
feedback data. Because the Data Blocks are configured in Phase 2, there is no overhead using the

Data Blocks to send data in Phases 3 and 4. Data exchange using the Data Blocks is referred to as

cyclic.

Master Synchronization Telegram

The Master Controller uses master synchronization telegrams (MST) to coordinate its transmission
cycle timing with the Slaves. The Master initiates a SERCOS cycle by transmitting an MST to all of
the drives and I/O modules on the ring. The MST message field contains one 8-bit word, of which
the three lowest bits determine the communication phase of the system. The MST is sent at the
beginning of the SERCOS cycle in all communication phases.

http://support.motioneng.com/soft/zSercos/telegrams.htm (3 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

1 byte 1 byte 1 biyte 2bytes 1 byle

BCF ADR Message Field FCS | EOF

o|o0 |0 o1 0

Current Phase
Close the SERCOSring O 0O 0 Phase(
Identify drives 0 O 1 Phase 1
Verify drive timing 0 1 0 Phase?2
Cyclic parameterization 0 1 1 Phase 3
Cyclic operations 1 o 0 Phase4
Field Bytes Description
BOF 1 Beginning of Frame. The BOF marks the start of a telegram.
®mor ADR 1 Thetarget address. In the MST, ADR = 255 (the broadcast
address) during Phases 3 and 4.
Current Phase 1 Thelower 3 bits designate the SERCOS phase (O - 4)
FCS 2 Frame check sequence. The FCSfield contains circular
EOF 1 redundancy check (CRC) information.

End of Frame. The EOF marks the end of the telegram.

Master Data Telegram
During Phase 2, the Master must communicate with the Slavesin order to configure them for
operationsin Phases 3 and 4. In order to send or request data, the Master will send a Master Data
Telegram (MDT) to a specific Slave (the Slave is addressed explicitly). Since only one Slaveisto
receive the MDT, the MDT Message Field contains only one Data Record, where the length of the
Data Block (inside the Data Record) is 0, i.e., the data block is empty. During Phase 2, the Master
sends data to each Slave via the Service Channel.

During Phase 2, the Master informs the Slave of the byte offset into the MDT at which the Data
Record resides for that Slave. The length (in bytes) of the Data Block within each Data Record
depends on the data fields configured by the Master during Phase 2. The data fields within the Data
Block usually contain command information.

During Phases 3 and 4, once per SERCOS cycle the Master sends a Master Data Telegram (MDT)
that has a global (broadcast) address. Because the global addressis used, all Slaves receive the
MDT. Since all Slaves will receivethe MDT, the MDT Message Field contains one Data Record for
each Slave in the system. During Phases 3 and 4, data is sent to a Slave by using the Data Blocks
(cyclic) or the Service Channel (non-cyclic).

http://support.motioneng.com/soft/zSercos/telegrams.htm (4 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

BOF ADR Message Field FC5| EOF
2 bytes 1 byle
Nar-cyclic Cyciie 1
DN C i Drive Data
Confrol Ward Saemvice infa DOitive ‘|I:|n1rnan : Recard 1
C:)—_Gontml Word Service info LNE LI A Drive Data

Record 2

Drrive 1
»
=

Senace Channgl ———— Oparations Channel
| IDN Commands Dirive Data
Cantral Waord Senvice info Orives 0 Lip tn 16 bytes Record
2 byles 2 bytes

In any single MDT's cyclic data porfion, the
list of IDMs (which IDNs, and the order of the
list) is defined by 5-0-24.

Field Size (bytes)
BOF 1
ADR 1
*Control Word 2
*Service Info 2
*|DN Commands Variable **
FCS 2
EOF 1

IDN list is defined by 5-0-24

S-0-xaxx S0 P-O-yywy P-0-yyyy
Biyte 1 Byt 2 Byte 1 Byte 2

L Elementy —— 1L Element7y ——— 1

Spead. torgue or position commands
Description

Beginning of Frame, which isaways 0111 1110.
The BOF marks the start of atelegram.

Target address. Inthe MDT, ADR = 255 (the
broadcast address).

Control word for drive n. Contains operational data.
Contains the non-cyclic datafor drive n.
Contains the cyclic datafor drive n.

Frame check sequence. Contains circular
redundancy check (CRC) info.

End of Frame, which isalways 0111 1110. The EOF
marks the end of the telegram.

* These fields comprise the data record. There is one data record per drive in the MDT.
** Thelength if the IDN Commands field is determined during Phase 2

Bit Name & Value
15 0 Drive OFF
1 Drive ON

14 0 Drive Disable
1 Drive Enable

13 0 Drive Halt
1 Drive Restart

12,11 Reserved

Mor e Detail

Bit 15-13=111, the drive should follow
command values.

When 1->0, the drive removes torque
from the motor, and allows the motor to
spin down.

When 1->0, torque isimmediately
disabled, independent of bits 15 and 13.

10 Control Unit Synchronization Bit

http://support.motioneng.com/soft/zSercos/telegrams.htm (5 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

9,8 Operation Mode
00 primary op mode
01 secondary op mode 1
10 secondary op mode 2
11 secondary op mode 3

7 Real-time Control Bit 2 S-0-302
6 Real-time Control Bit 1 S-0-300

5,4,3 DataBlock Element
000 Service channel not active,
001 IDN (number) of the op data
010 Name of operation data
011 Attribute of op data
100 Units of op data
@ Top 101 Min input value
110 Max input value
111 Operation data

2 0 Transmission in progress
1 Last transmission

1 0 Read serviceinfo
1 Write serviceinfo

0 Master Service Transport
Handshake

Defined byS-0-32
Defined by S-0-33
Defined by S-0-34
Defined by S-0-35

-Close service channel or break a
transmission in progress - The service
channel is closed for the previous IDN and
opened for anew IDN.

A toggle bit

Amplifier Telegram
During Phase 2, the Slave sends an Amplifier Telegram (AT) only when it receives a Master Data
Telegram (MDT) that contains that Slave's address. The AT contains one Data Record where the
length of the DataBlock is O, i.e., the data block is empty. During Phase 2, the Master sends data to
each Slave viathe Service Channel.

During Phases 3 and 4, each Slave sends an Amplifier Telegram (AT) every SERCOS cycle, at the
time designated by the Master during Phase 2. The AT Message Field contains one Data Record,
where the length of the Data Block (inside that Data Record) is determined by the datafields
configured by the Master during Phase 2. The data fields within the Data Block usually contain
feedback and status information.

During Phases 3 and 4, datais sent to the Master by using the Data Blocks (cyclic) or the Service
Channel (non-cyclic).

http://support.motioneng.com/soft/zSercos/telegrams.htm (6 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

I any sngle ATS cycho data portian, the list
af IONs fwhich TONs and the arder of fhe i=f)
15 defned by 5-0-16

1 byte 1 byte Up to 20 bytes 1 byte 1 byle
ADR Data Record for
BOF | drive xx e FCS| EOF

——— Service Channel ————

Status Word Service Info Uﬂﬂfﬂ’fiﬂri'cﬂﬂ*ﬂ

Cycl

2 byles 2 bytes

DN list is defined by S-0-16

St Saere Tad ey | Tedy

Byfe

L——Element 7 1 L Element 7

Field Size (bytes)
BOF 1
ADR 1
Status 2
Service Info 2
Operation Data Variable *
FCS 2
EOF 1

Speed. forque or posilion measuremenis

Description

Beginning of Frame.

The BOF marks the start of atelegram.

sends address.

Control word for drive n. Contains operational data.
Contains the non-cyclic data for drive n.

Contains the cyclic data for drive n.

Frame check sequence. Contains circular
redundancy check (CRC) info.

End of Frame, which isalways 0111 1110. The EOF
marks the end of the telegram.

* The length of the Operation Datafield is determined during Phase 2.

Bit
15,14

13
12
11
9,8

Name & Value More Detail

Ready to operate

00 drive not ready for power-up
01 drive ready for power-up

10 drive power ready

11 drive ready to operate

Drive Shutdown Error, Class 3 Diags

Change Bit for Class 2 Diags

Change Bit for Class 3 Diags

Actual Operation Mode
00 primary op mode

01 secondary op mode 1
10 secondary op mode 2
11 secondary op mode 3

Real-time Status Bit 2

Real-time Status Bit 1

Defined by S-0-32
Defined by S-0-33
Defined by S-0-34
Defined by S-0-35

See S-0-306
See S-0-304

http://support.motioneng.com/soft/zSercos/telegrams.htm (7 of 8) [3/12/2002 2:37:32 PM]

Sercos-Telegrams

5 Change Bit Commands
0 No Change in Command Status
1 Changing Command Status

4 3 Reserved

2 Error O No Error 1 Error in Service Error messageisin drive's Service
Channel Channel.

1 Busy 0 Step Finished 1 Step in Progress
Master Service Transport Handshake A Toggle bit

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

@® nexr

Copyright @ 2002
fMotion Enginesring

http://support.motioneng.com/soft/zSercos/telegrams.htm (8 of 8) [3/12/2002 2:37:32 PM]

Sercos- Application Topologies

Sercos- Application Topologies

Control Unit
77T our| Master #4 Master #2 | < - .,
fr ‘i..
! ¥
d SERCOS Optical Ring :
N 1
ouT w21]) |'
(1] - ' :

SERCOS

MNoDE

A Sercos object represents a A Node object represents a Slave Node on
Master on the SERCOS ning. the SERCOS ring, which is typically either
a drive or an Y0 module.

[s-x-mx {Standard IDNs)
oR
/ IDNLIST |====1 DN 1
Ion P-X2000XX lon 2
(Manufacturer-specific IDNs) An ldnList object Ion 3
An Id{r obfect is simply a keeps a list of lon 4
container for a SERCOS ldns.
IDN.
SERCOS |==== IoN 1 NODE3 |f=s==s [DNLIST [s=ws== lon 1
Ion 2 - . lon 2
A Sercos object IoN 3 An ldnList object is IoN 3
keeps a list of lon 4 afl_.vays associated IDN 4
Node objects. with a Node.

Introduction | Overview | Data Types | Communications | Procedures | Telegrams | Topologies

Return to Software's Main Menu

Copyright & 2002
Motion Engineearing

http://support.motioneng.com/soft/zSercos/topologies.htm [3/12/2002 2:37:34 PM]

http://support.motioneng.com/soft/search_object.htm

SERCOS Communication Error Notification

SERCOS Communication Error Notification

If your motion controller uses SERCOS, you can take advantage of specialized status information. The MPI StatusMask in

the MPI Status structure makes it possible to read the M Pl StatusFl ag(s):

/* MPI Status */
t ypedef enum {
MPI St at usFI agl NVALI D,
MPI St at usFl agCOVM_ERROR,
} MPI St at usFl ag;

#def i ne npi St at usMaskBI T(f 1 ag) (0x1 << (flag))

typedef enum {
MPI St at us Mask NONE
MPI St at usMask COVM_ERRCOR
MPI St at usMask MOTOR
MPI St at usMaskALL
} MPI St at usMask;

0x0,

typedef struct MPI Status {
MPI St at e state;
MPI Acti on action;
MPI Event Mask event Mask;

| ong settl ed;
| ong at Tar get ;

MPI St at usMask st at usMask;
} MPI St at us;

npi St at usMaskBI T(MPI St at usFl agCOVWM _ERROR), /* 0x00000001 */
MPI St at usMaskCOVMM_ERROR, /* 0x00000001 */
nmpi St at usMaskBI T(MPI St at usFl agLAST) - 1 /* 0x00000001 */

Presently, the only MPI StatusFlag supported is MPI StatusFlagCOMM _ERROR. This flag represents the communication
status. For XM P-Series SERCOS controllers, this flag represents the status of the SERCOS communication. When the

SERCOS communication ring fails, the MPI StatusFlagCOMM_ERROR is set. The flag can only be cleared by
re-initializating the SERCOS ring with mpi Sercoslnit(...).

Return to Sercos Objects page

Caopyright @ 2002
Motion Engineering

http://support.motioneng.com/soft/sercos/comm_err.htm [3/12/2002 2:30:38 PM]

http://support.motioneng.com/soft/Global/Datatype/stsmsk1.htm
http://support.motioneng.com/soft/Global/Datatype/sts1.htm
http://support.motioneng.com/soft/Global/Datatype/stsflag1.htm

	motioneng.com
	Sercos Objects
	mpiSercosCreate
	mpiSercosDelete
	mpiSercosValidate
	mpiSercosConfigGet
	mpiSercosConfigSet
	mpiSercosError
	mpiSercosFlashConfigGet
	mpiSercosFlashConfigSet
	meiSercosServiceIdnFieldGet
	meiSercosServiceIdnFieldSet
	meiSercosServiceProcedure
	mpiSercosStatus and meiSercosStatus
	mpiSercosInit
	mpiSercosReset
	mpiSercosMemory
	mpiSercosMemoryGet
	mpiSercosMemorySet
	mpiSercosControl
	mpiSercosNumber
	mpiSercosNode
	mpiSercosNodeAppend
	mpiSercosNodeCount
	mpiSercosNodeFirst
	mpiSercosNodeIndex
	mpiSercosNodeInsert
	mpiSercosNodeLast
	mpiSercosNodeListGet
	mpiSercosNodeListSet
	mpiSercosNodeNext
	mpiSercosNodePrevious
	mpiSercosNodeRemove
	MPISercosBaud
	MPISercosError
	MPISercosErrorGroup
	MPISercosErrorType
	MPISercosLoopStatus
	MPISercosMessage and MEISercosMessage
	MPISercosProcedureAction
	MEISercosServiceContainer
	MPISercosStatus
	MPISercosNODE_COUNT_MAX
	mpiSercosNodeIdnDataSET
	mpiSercosNodeIdnGET

	Sercos- Introduction
	Sercos-Overview
	Sercos-Data Types
	Sercos-Communications
	Sercos-Procedures
	Sercos-Telegrams
	Sercos- Application Topologies
	SERCOS Communication Error Notification

